First total absorption spectrometry measurement of the β -decay of ¹³⁹Xe

Aleksandra Fijałkowska Faculty of Physics, University of Warsaw

M. Karny, K.P. Rykaczewski, M. Wolińska-Cichocka, B.C. Rasco, R. Grzywacz, C.J. Gross, J.W. Johnson, D. Miller, E.F. Zganjar, R. Goans, K.C. Goetz, J.H. Hamilton, C. Jost, M. Madurga, K. Miernik, S.W. Padgett, S.V. Paulauskas, A.V. Ramayya, D. Stracener

06.06.2014 ARIS, Tokyo

Decay heat

Beta and gamma energy released by the decay of fission products

$$f(t) = \Sigma_i (E_{\gamma,i} + E_{\beta,i}) \lambda_i N_i(t)$$

Gamma component of ²³⁹Pu decay heat

A. Algora et al., PRL 105, 202501 (2010)
A. Tobias, CEGB Report No. RD/B/6210/R89, 1989

 E_i - mean decay energy of nucleus i (β and γ) λ_i - decay constant $N_i(t)$ - number of nuclei i at time t

Decay heat

Beta and gamma energy released by the decay of fission products

$$f(t) = \Sigma_i (E_{\gamma,i} + E_{\beta,i}) \lambda_i N_i(t)$$

 E_i - mean decay energy of nucleus i (β and γ) λ_i - decay constant $N_i(t)$ - number of nuclei i at time t

Radionuclides recommended for TAGS measurements Assessment offission product, decay data for decay heat calculations, T. Yoshida, A.L. Nichols, OECD NEA, 2007

+ Neutron-induced Cummulative Fission Yields (235U)

86 Br 1.6 % 87 Br 88 Br 89 Kr 4.5 % 90 Kr 98 Nb 99 Nb	101 Nb 103 Mo 105 Mo 102 Tc 103 Tc 104 Tc 105 Tc	132 Sb 136 I 137 I 137 Ze B. C. Rasco, β - γ and β -n- γ Emission in Mass A=137 Decay Chain 137 Xe Studied with the Modular Total Absorption Spectrometer (MTAS) 139 Xe 5.0 %
99 Nb 100 Nb	105 IC 106 Tc	140 Xe

High efficiency spectrometry

Pandemonium Efect

J. C. Hardy et al., Physics Letter B 71 (1977) 307-310

Total Absorption Spectrometry, ⁶⁰Co spectrum

Modular Total Absorption Spectrometer (MTAS)

M. Wolińska-Cichocka, Testing the on-line response of Modular Total Absorption Spectrometer: 142Ba \rightarrow 142La \rightarrow 142Ce decay chain, ARIS2014

Simulated full energy gamma ray efficiency for Central detector, Inner ring, and all MTAS for complete MTAS array.

19 hexagonal Nal crystals. Diameter: 8" length: 21" each.

Experiment

transporting collected activity.

⁸⁶Br

levels being fed, NOT to the individu gamma transitions.

Decay scheme modification

Assumptions:

- 1. Decay scheme is completed up to Ecut energy
- 2. Above $\mathsf{E}\mathsf{cut}$ pseudo-levels every 100 keV, up to $Q\beta$
- 3. Only allowed Gamow-Teller transitions
- (level density formula A. Gilbert, A. G. W. Cameron, Can. Jurn. of Phys. 43 (1965))
- 4. Pseudo-levels deexcite to "known" levels.
- 5. Only E1, M1 and E2 transitions

⁸⁶Br

⁸⁶Br, gamma spectrum

¹³⁹Xe

¹³⁹Xe

Anti-neutrino spectrum

Summary

Twenty-two decays of fission product, including seven of the first priority list established by the OECD NEA assessment in 2007 were measured with MTAS

Experimental spectrum shows excess of high-energy gamma-transitions not present in the ENSDF data base

MTAS measurements led to different beta decay patterns, resulting in a decrease of average energy of emitted beta and anti-neutrino particles and in an increase in average gamma energy (increase of "decay heat")

Analysis changed the knowledge about average gamma energy per decay:

 ⁸⁶Br 3259 keV 3712 keV 14%
 ¹³⁹Xe 935 keV 1370 keV 43%
 ⁸⁹Kr 1801 keV 2647 keV 47% M. Karny First results from the Modular Total Absorption Spectrometer (MTAS) at the HRIBF (ORNL, Oak Ridge), ARIS 2014 ⁶⁰Co

B. C. Rasco β - γ and β -n- γ Emission in Mass A=137 Decay Chain Studied with the Modular Total Absorption Spectrometer (MTAS)

