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Nuclear landscape

Big variety of nuclei in the
nuclear chart, A ∼ 2...300

Systematic ab initio
calculations only possible in
the lightest nuclei

Hard many-body problem:
approximate methods suited
for different regions

Shell Model:
Solve the problem choosing the relevant degrees of freedom
Use realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions
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Nuclear forces in chiral EFT
Chiral EFT: low energy approach to QCD for nuclear structure energies

Short-range couplings are fitted to experiment once

Systematic expansion of nuclear forces

Weinberg, van Kolck, Kaplan, Savage, Weise, Meißner, Epelbaum...

pion exchanges
contact terms

NN fitted to:

• NN scattering

• π-N scattering

3N fitted to:

• 3H Binding Energy

• 4He radius
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Medium-mass nuclei: shell model

To keep the problem feasible, the
configuration space is separated into

• Outer orbits:
orbits that are always empty

• Valence space: the space in which
we explicitly solve the problem

• Inner core:
orbits that are always filled

Solve in valence space: H |Ψ〉 = E |Ψ〉 → Heff |Ψ〉eff = E |Ψ〉eff

Heff is obtained in many-body perturbation theory (MBPT)
includes the effect of inner core and outer orbits
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Renormalization group (RG) and MBPT

Better
convergence of
chiral forces after
RG transformation

Many-body perturbation
theory to third order:
obtain effective
shell model interaction
in the valence space

Single Particle Energies Two-Body Matrix Elements

Solve many-body problem with shell model code ANTOINE
Diagonalize up to 1010 Slater determinants Caurier et al. RMP 77 (2005)

|φα〉 = a+
i1a+

i2...a
+
iA |0〉 |Ψ〉eff =

∑
α

cα |φα〉
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Ca isotopes: masses
Ca isotopes: explore nuclear shell evolution N = 20,28,32?,34?
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evolution:
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Jones et al.
Nature 465 454 (2010)
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Two-neutron separation energies

Compare S2n = −[B(N,Z )− B(N − 2,Z )] with experiment
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S2n in 52Ca predicted in
disagreement with old
measurements

Precision measurements
with TITAN changed AME 2003
∼ 1.74 MeV in 52Ca

More flat behavior in 50Ca–52Ca

3N forces needed

Gallant et al.
PRL 109 032506 (2012)
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54Ca mass and N = 32 shell closure

Recent measurement of 53,54Ca at ISOLDE
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Excellent agreement with
theoretical prediction

S2n evolution:
52Ca–54Ca decrease
similar to 48Ca–50Ca
unambiguously establishes
N = 32 shell closure
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Two-neutron separation energies

Compare to other theoretical calculations
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Phenomenology
good agreement
masses/gaps as input

Coupled-Cluster calculations
good agreement
phenomenological 3N forces
Hagen et al. PRL109 032502 (2012)
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Shell closures and 2+
1 energies

2+
1 energies characterize

shell closures

Correct closure at N = 28
when 3N forces are included

Holt et al. JPG39 085111(2012)
Holt, JM, Schwenk,
JPG40 075105 (2013)
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• 3N forces enhance closure at N = 32

• 3N forces reduce strong closure at N = 34
Expt: suggest N = 34 shell closure
E(2+

1 )=2.04 MeV Steppenbeck et al. Nature 502 207(2013)
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Excitation spectra

Spectra for neutron-rich calcium isotopes
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Good agreement with experiment when available,
comparable to phenomenological interactions

Predictions in very neutron-rich nuclei, test in upcoming experiments
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Electromagnetic transitions

B(E2)s in reasonable
agreement with experiment
span three orders of
magnitude

Similar quality as
phenomenological
interactions
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Towards theoretical uncertainties
Estimate theoretical uncertainties
allows meaningful comparison to experiment
and better predictions of properties of non-accessible isotopes

• Theoretical uncertainties
associated to nuclear force:

Explore sensitivity of results
with respect to cutoff of RG evolution
of unevolved chiral Hamiltonian
Impose correct nuclear matter saturation

Consider different unevolved chiral
Hamiltonians (outlook)

• Theoretical uncertainties
associated to the many-body approach
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Hebeler et al. PRC 83 031301 (2011)
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Chiral EFT and RG

Original Hamiltonian
includes:
Chiral NN force
up to N3LO
Chiral 3N force
up to N2LO

Evolve through
RG transformation
to improve the
convergence
in many-body
calculation
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Theoretical uncertainties in sd nuclei
Sensitivity to resolution-scale dependence of RG-evolved nuclear forces

Experimental trends very well reproduced in S2n’s and S2p’s
Uncertainties in S2n’s ∼ 1− 3 MeV, in spectra much smaller ∼ 500 keV
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Summary

Shell Model calculation based on chiral effective field theory
including NN+3N forces and many-body perturbation theory

• Predicted neutron rich Ca S2n’s with NN+3N forces agree with recent
measurements of 51,52Ca (TRIUMF) and 53,54Ca (ISOLTRAP)

• Shell structure: prominent closure established at N = 32

• Predicted 54Ca 2+
1 in good agreement with measurement at RIBF

• Shell structure: suggested shell closure at N = 34
to be complemented with mass measurements at 55Ca and 56Ca

• Excitation spectra, B(E2) and B(M1) transitions

• Towards theoretical uncertainty quantification
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