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Use effective degrees of freedom: p,n,pions

Effective Field Theory:  Bridges the non-perturbative low-energy regime of QCD with forces
                                      among nucleons
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Have a systematic expansion of the Hamiltonian 
in terms of diagrams

Construct the most general Hamiltonian which is 
consistent with the chiral symmetry of QCD

(3NFs arise naturally at N2LO)!

Modern realistic nuclear forces 
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FIG. 2: Single-particle energies of the neutron d5/2, s1/2 and
d3/2 orbitals measured from the energy of 16O as a function of
neutron number N . (a) SPE calculated from a G matrix and
from low-momentum interactions Vlow k. (b) SPE obtained
from the phenomenological forces SDPF-M [14] and USD-
B [15]. (c,d) SPE including contributions from 3N forces due
to∆ excitations and chiral EFT 3N interactions at N2LO [26].
The changes due to 3N forces based on ∆ excitations are
highlighted by the shaded areas.

sures N = 8, 14, 16, and 20. The evolution of the SPE
is due to interactions as neutrons are added. For the
SPE based on NN forces in Fig. 2 (a), the d3/2 orbital
decreases rapidly as neutrons occupy the d5/2 orbital,
and remains well-bound from N = 14 on. This leads
to bound oxygen isotopes out to N = 20 and puts the
neutron drip-line incorrectly at 28O. This result appears
to depend only weakly on the renormalization method
or the NN interaction used. We demonstrate this by
showing SPE calculated in the G matrix formalism [11],
which sums particle-particle ladders, and based on low-
momentum interactions Vlow k [12] obtained from chiral
NN interactions at next-to-next-to-next-to-leading order
(N3LO) [13] using the renormalization group. Both cal-
culations include core polarization effects perturbatively
(including diagram Fig. 3 (d) with the ∆ replaced by a
nucleon and all other second-order diagrams) and start
from empirical SPE [14] in 17O. The empirical SPEs con-
tain effects from the core and its excitations, including
effects due to 3N forces.
We next show in Fig. 2 (b) the SPE obtained from the

phenomenological forces SDPF-M [14] and USD-B [15]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2 (a): As neutrons occupy the d5/2 orbital,
with N evolving from 8 to 14, the d3/2 orbital remains
almost at the same energy and is not well-bound out to
N = 20. The dominant differences between Figs. 2 (a)
and (b) can be traced to the two-body monopole compo-
nents, which determine the average interaction between
two orbitals. The monopole components of a general two-
body interaction V are given by an angular average over
all possible orientations of the two nucleons in orbitals lj
and l′j′ [16],

V mono
j,j′ =

∑

m,m′

〈jm j′m′|V |jm j′m′〉
/

∑

m,m′

1 , (1)

where the sum over magnetic quantum numbers m and
m′ can be restricted by antisymmetry (see [17, 18] for
details). The SPE of the orbital j is effectively shifted by
V mono
j,j′ multiplied by the occupation number of the orbital

j′. This leads to the change in the SPE and determines
shell structure and the location of the drip-line [17–20].
The comparison of Figs. 2 (a) and (b) suggests that the

monopole interaction between the d3/2 and d5/2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction
on the d3/2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [21].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repul-
sive monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion princi-
ple. Figure 3 (a) depicts the leading contribution to NN
forces due to the excitation of a ∆, induced by the ex-
change of pions with another nucleon. Because this is
a second-order perturbation, its contribution to the en-
ergy and to the two-neutron monopole components has
to be attractive. This is part of the attractive d3/2-d5/2
monopole component obtained from NN forces.
In nuclei, the process of Fig. 3 (a) leads to a change of

the SPE of the j,m orbital due to the excitation of a core
nucleon to a ∆, as illustrated in Fig. 3 (b) where the ini-
tial valence neutron is virtually excited to another j′,m′

orbital. As discussed, this lowers the energy of the j,m
orbital and thus increases its binding. However, in nuclei
this process is forbidden by the Pauli exclusion princi-
ple, if another neutron occupies the same orbital j′,m′,
as shown in Fig. 3 (c). The corresponding contribution
must then be subtracted from the SPE change due to
Fig. 3 (b). This is taken into account by the inclusion

Chiral EFT for nuclear forces: 

Need at LEAST 3NF!!! 
(“cannot” do RNB physics without…)!

Single particle spectrum at Efermi:!
!

Saturation of nuclear matter:!

[T. Otsuka et al.,!
Phys Rev. Lett  105, !
032501 (2010)]!

[A. Carbone et al.,  
Phy.s Rev. C 88, 044302!!(2013)]!

SYMMETRIC NUCLEAR MATTER WITH CHIRAL THREE- . . . PHYSICAL REVIEW C 88, 044302 (2013)

Note that the N2LO potential yields a poorer reproduction of
the phase shifts for selected partial waves compared to the
richer N3LO force.

Most nuclear matter calculations using chiral forces have
been performed within a perturbative framework starting
from evolved interactions. In Ref. [43], convergence has
been analyzed order by order in many-body perturbation
theory. Results have been obtained up to third order, including
particle-particle and hole-hole propagation [43]. In principle,
the equation of state should be independent of the evolution
scales in the 2NF and the 3NF. Moreover, in the perturbative
regime, results should only be mildly dependent on the order in
perturbation theory. Our nonperturbative calculations include
contributions to all orders and hence are neither limited to the
perturbative regime nor dependent on the order of perturbation
theory. If the diagrammatic summation is complete, it should
lead to scale-invariant results.

We test this hypothesis by performing calculations at
different evolution scales, in both the two- and the three-
body sectors. We evolve the 2NF using a free-space SRG
transformation [37]. The transformation renormalizes the 2NF,
suppressing off-diagonal matrix elements and giving rise to
a universal low-momentum interaction. The SRG evolution
flow also induces many-body forces, which should be taken
into account to keep the calculation complete. Following the
philosophy of Ref. [43], we incorporate the effect of induced
forces through the refitting of the cD and cE LECs to the 3H
binding energy and 4He matter radius. We use the values given
in Table I of [43]. Note that in this process we assume that
the operatorial and momentum structures of the original and
the induced 3NFs are the same. Furthermore, we explore the
dependence of our results on the 3NF cutoff, !3NF, appearing
in the density-dependent 2NF. A more complete calculation
would require running a SRG evolution including the 3NF [41].

We present the results of this exploration in Fig. 8.
Numerical calculations obtained using the SRG on the 2NF
have a saturation point which is much closer to the empirical
value when compared to the original force. Moreover, if
the 2NF has been SRG-evolved, the results are somewhat
independent of the cutoff. Overall, one can say that the
more the 2NF is evolved downward, the more attractive the
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FIG. 8. (Color online) SCGF results for the energy per nucleon
of SNM as a function of the density at a temperature of T = 5 MeV.
Different lines represent different choices of cutoffs for the 2NF, λ,
and the 3NF, !3NF.

saturation curve becomes. This effect is a consequence of the
shift in importance between the 2NF and the induced 3NF
associated with the SRG. There is also a small dependence on
!3NF, but the differences agree well with those presented in
Ref. [43].

The large differences between the results obtained with
evolved and unevolved forces is striking. If correlations and
induced many-body forces had been fully taken into account,
one would have expected a much closer agreement between
the results. This difference might indicate that the assumptions
associated with induced 3NFs are not necessarily robust.
Missing induced three-body forces, which up to now have
not been included in SNM calculations, could resolve this
discrepancy. Alternatively, the difference is also an indication
of missing many-body effects such as, for instance, higher
orders in the treatment of the 3NF. It must be emphasized that
the present way to proceed when applying SRG evolution
in infinite matter should be improved by carrying out the
evolution on a full Hamiltonian with both two- and three-body
forces. Recently, improvements toward the solution of this
problem have been presented for calculations in pure neutron
matter [41], where a full Hamiltonian has been consistently
evolved. All in all, our results seem to contradict the idea that
induced 3NFs can be treated simply in nuclear matter.

In terms of evolved interactions, our nonperturbative
calculations can be used to check whether the perturbative
regime is actually reached. To this end, we compare, in
Fig. 9, our results to the perturbative calculations presented
in Ref. [43]. The BHF and SCGF calculations have been
performed with a SRG-evolved 2NF and a 3NF with the same
cut-offs, λ/!3NF = 2.0/2.0 fm−1. Whereas the Brueckner
results have been obtained with a zero-temperature code, the
SCGF calculations have been extrapolated to zero temperature
by means of a simple procedure. At low temperatures,
the Sommerfeld expansion indicates that the effect of tem-
perature is quadratic and is the same, but with opposite sign,
for the energy and the free energy [47]. Consequently, the
semi-sum of both thermodynamical potentials is an estimate
of the zero-temperature energy. We obtain an extremely
good agreement between both many-body approaches and

0 0.08 0.16 0.24 0.32

Density, ρ [fm
-3

]

-20

-15

-10

-5
E

ne
rg

y/
nu

cl
eo

n,
 E

/A
 [

M
eV

]
Hebeler et al.
BHF
SCGF

T=0 MeV λ/Λ3NF=2.0 fm
-1

FIG. 9. (Color online) Comparison of results for the energy per
nucleon of SNM obtained with different approaches using the same
SRG-evolved 2NF and a 3NF. Circles correspond to extrapolated
SCGF results, whereas squares are BHF calculations at T = 0 MeV.
Diamonds correspond to the results of Hebeler et al. [43].
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Use effective degrees of freedom: p,n,pions

Effective Field Theory:  Bridges the non-perturbative low-energy regime of QCD with forces
                                      among nucleons
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Have a systematic expansion of the Hamiltonian 
in terms of diagrams

Construct the most general Hamiltonian which is 
consistent with the chiral symmetry of QCD

N3LO (Λ = 500Mev/c) 
chiral NN interaction  

(3NFs arise naturally at N2LO)!

N2LO (Λ = 400Mev/c) 
chiral 3N interaction  

SRG evolution to !=2.0 fm
-1!

VNN ! V3N 
induced !

V3N 
full!

“induced” 
Hamiltoninan!

“full” 
Hamiltoninan![Jurgenson,!Navrá>l,!Furnstahl,!!

Phys.!Rev.!LeE.!103,!082501!(2009);!
Hebeler,!Phys.!Rev.!C!85,!021002!(2012)]!

Chiral Nuclear forces - SRG evolved 



Faddeev-RPA in two words… 
Particle vibration coupling is the main cause driving the distribution of 
particle strength—a least close to the Fermi surface…�

n� p�

≡!!
!par7cle!

≡!hole!

…these modes are all resummed exactly and 
to all orders in a ab-initio many-body expansion.!



neutron*
removal�

neutron*
addi1on�

sca4ering�

56Ni�

One-body Green’s function (or propagator) describes the motion of quasi- 
particles and holes: 
 
 
 
 
 …this contains all the structure information probed by nucleon transfer 
(spectral function): 

2

15]. The method has later been applied to atoms and
molecules [12, 16] and recently to 56Ni [17] and 48Ca [18].
The ab initio results of Ref. [18] are in good agreement
with (e, e′p) data for spectroscopic factors from Ref. [19]
and also show that the configuration space needed for the
incorporation of long-range (surface) correlations is much
larger than the space that can be utilized in large-scale
shell-model diagonalizations. In Ref. [20], the FRPA was
employed to calculate proton scattering on 16O and ob-
tain results for phase shifts and low-lying states in 17F.
However, the properties of the self-energy at larger scat-
tering energies which are now of great interest for the
developments of DOM potentials was not addressed. In
particular, one may expect to extract useful information
regarding the functional form of the DOM from a study
of the self-energy for a sequence of calcium isotopes. It
is the purpose of the present work to close this gap. We
have chosen in addition to 40Ca and 48Ca also to include
60Ca, since the latter isotope was studied with a DOM
extrapolation in Refs. [8, 9]. Some preliminary results of
these FRPA calculations for spectroscopic factors were
reported in Ref. [14] but the emphasis in the present work
is on the properties of the microscopically calculated self-
energies. The resulting analysis is intended to provide
a microscopic underpinning of the qualitative features of
empirical optical potentials. Additional information con-
cerning the degree and form of the non-locality of both
the real and imaginary parts of the self-energy will also
be addressed because it is of importance to assess the
current local implementations of the DOM method.
In Sec. II A we introduce some of the basic properties

for the analysis of the self-energy. The ingredients of the
FRPA calculation are presented in Sec. II C. The choice
of model space and realistic nucleon-nucleon (NN) inter-
action are discussed in Sec. III. We present our results
in Sec. IV and finally draw conclusions in Sec. V.

II. FORMALISM

In the Lehmann representation, the one-body Green’s
function is given by

gαβ(E) =
∑

n

〈ΨA
0 |cα|Ψ

A+1
n 〉〈ΨA+1

n |c†β|Ψ
A
0 〉

E − (EA+1
n − EA

0 ) + iη

+
∑

k

〈ΨA
0 |c

†
β|Ψ

A−1
k 〉〈ΨA−1

k |cα|ΨA
0 〉

E − (EA
0 − EA−1

k )− iη
, (1)

where α, β, ..., label a complete orthonormal basis set
and cα (c†β) are the corresponding second quantization
destruction (creation) operators. In these definitions,
|ΨA+1

n 〉, |ΨA−1
k 〉 are the eigenstates, and EA+1

n , EA−1
k

the eigenenergies of the (A ± 1)-nucleon isotope. The
structure of Eq. (1) is particularly useful for our pur-
poses. At positive energies, the residues of the first term,
〈ΨA+1

n |c†α|Ψ
A
0 〉, contain the scattering wave functions for

the elastic collision of a nucleon off the |ΨA
0 〉 ground state,

while at negative energies they give information on fi-
nal states of the nucleon capture process. Consequently,
the second term has poles below the Fermi energy (EF )
which carry information about the removal of a nucleon
and therefore clarify the structure of the target state |ΨA

0 〉
itself. Green’s function theory provides a natural frame-
work for describing physics both above and below the
Fermi surface in a consistent manner.
The propagator (1) can be obtained as a solution of

the Dyson equation,

gαβ(E) = g(0)αβ (E) +
∑

γδ

g(0)αγ (E)Σ%
γδ(E) gδβ(E) , (2)

in which g(0)(E) is the propagator for a free nucleon
(moving only with its kinetic energy). Σ%(E) is the irre-
ducible self-energy and represents the interaction of the
projectile (ejectile) with the target nucleus. Feshbach,
developed a formal microscopic theory for the optical po-
tential already in Ref. [21, 22] by projecting the many-
body Hamiltonian on the subspace of scattering states.
It has been proven that if Feshbach’s theory is extended
to a space including states both above and below the
Fermi surface, the resulting optical potential is exactly
the irreducible self-energy Σ%(E) [23] (see also Ref. [24]
and Ref. [25] for a shorter demonstration).
The above equivalence with the microscopic optical po-

tential is fundamental for the present study, since the
available knowledge from calculations based on Green’s
function theory can be used to suggest improvements of
optical models. In particular, in the DOM, the dispersion
relation obeyed by Σ%(E) is used to reduce the number of
parameters and to enforce the effects of causality. Thus
the DOM potentials can also be thought of as a repre-
sentation of the nucleon self-energy.

A. Self-Energy

For a J = 0 nucleus, all partial waves ($, j, τ) are
decoupled, where $,j label the orbital and total angu-
lar momentum and τ represents its isospin projection.
The irreducible self-energy in coordinate space (for ei-
ther a proton or a neutron) can be written in terms of
the harmonic-oscillator basis used in the FRPA calcula-
tion, as follows:

Σ%(x,x′;E) =
∑

&jmjτ

I&jmj
(Ω,σ)

×

[

∑

na,nb

Rna&(r)Σ
%
ab(E)Rnb&(r

′)

]

(I&jmj
(Ω′,σ′))∗, (3)

where x ≡ r,σ, τ . The spin variable is represented by
σ, n is the principal quantum number of the harmonic
oscillator, and a ≡ (na, $, j, τ) (note that for a J = 0 nu-
cleus the self-energy is independent ofmj). The standard
radial harmonic-oscillator function is denoted by Rn&(r),
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available knowledge from calculations based on Green’s
function theory can be used to suggest improvements of
optical models. In particular, in the DOM, the dispersion
relation obeyed by Σ%(E) is used to reduce the number of
parameters and to enforce the effects of causality. Thus
the DOM potentials can also be thought of as a repre-
sentation of the nucleon self-energy.

A. Self-Energy

For a J = 0 nucleus, all partial waves ($, j, τ) are
decoupled, where $,j label the orbital and total angu-
lar momentum and τ represents its isospin projection.
The irreducible self-energy in coordinate space (for ei-
ther a proton or a neutron) can be written in terms of
the harmonic-oscillator basis used in the FRPA calcula-
tion, as follows:

Σ%(x,x′;E) =
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&jmjτ

I&jmj
(Ω,σ)

×

[

∑

na,nb

Rna&(r)Σ
%
ab(E)Rnb&(r

′)

]

(I&jmj
(Ω′,σ′))∗, (3)

where x ≡ r,σ, τ . The spin variable is represented by
σ, n is the principal quantum number of the harmonic
oscillator, and a ≡ (na, $, j, τ) (note that for a J = 0 nu-
cleus the self-energy is independent ofmj). The standard
radial harmonic-oscillator function is denoted by Rn&(r),

[CB,!M.Hjorth.Jensen,!Pys.!Rev.!C79,!064313!(2009);!CB,!Phys.!Rev.!LeE.!103,!202502!(2009)]!

Sh
ab(!) =

1

⇡
Im gab(!)

Green’s functions in many-body theory 



! 3NF crucial for reproducing binding energies and driplines around oxygen 
 
!   cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]!
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Single nucleon transfer in the oxygen chain 

fair agreement obtained for the calculation of the 16O rms
radii performed with the SLy4 interaction [31] compared to
the values deduced from 16Oðe; e0pÞ15Ngs and 15N3=2#
analyses [5], both states with large SFs. We thus adopted
the HFB radii calculated for the 0p wave functions for 14O
and 18O and deduced the corresponding values of r0. The
same calculation was done with other Skyrme interactions,
always in fair agreement with the 16Oðe; e0pÞ results, from
which we deduced a variance for r0.

The calculated angular distributions were normalized to
the data by a factor C2Sexp, which defines a so-called
experimental SF. C2Sexp are mainly sensitive to the most
forward angles, and so little sensitive to the details of the
nuclear potentials. C2Sexp strongly depend on radii with
!SF=SF $ 6!rrms=rrms in the 14Oðd; tÞ analysis.

We first reanalyzed published data for single nucleon
pickup reactions at about the same incident energy in direct
kinematics [19–21] on 16O and 18O targets. The angular
distributions were well reproduced in all cases by CRC
calculations. For 16Oðd; 3HeÞ at 14 and 26 MeV=nucleon,
we obtained same C2Sexp, which confirms the energy in-
dependence of the analysis. For the 14O (d, 3He) and
14O (d; t) transfers, the shape of the angular distributions

is nicely reproduced (Fig. 2) by the CRC calculations
assuming a !l ¼ 1 transferred angular momentum, as
expected from the transfer of a 0p nucleon.
In the second approach, we employed ab initio SFs and

OFs obtained from the single-particle Green’s function in
the third order algebraic diagrammatic construction
method [ADC(3)] [14,32]. Calculations were based on
chiral two-body next-to-next-to-next-to leading order
(N3LO) [33] plus three-body next-to-next-to leading order
(N2LO) [34] interactions evolved to a cutoff ! ¼
1:88 fm#1, as introduced in Ref. [35]. All microscopic
OFs were further rescaled in coordinate space by the
same factor (i.e., introducing only one phenomenological
correction) to account for differences of predicted [30] and
experimental rms radius of 16O. The OFs corresponding to
the removal of main peaks at large and small nucleon
separation energies are shown in Figs. 3(a) and 3(b),
respectively, and compared to the Wood-Saxon prescrip-
tion. We note very little radial difference in the removal of
the strongly bound neutron in 14O.
We give in Table I the normalizations C2Sexp for the two

kinds of OFs. From theoretical SFs inputs, either micro-
scopic ab initio SFs [30] or shell-model SFs, we obtain a
theoretical value "thð#Þ and the reduction factor Rs ¼
"expð#Þ="thð#Þ. For shell-model SFs, we performed two
calculations with different valence space and interaction:
(i) in the 0pþ 2@! valence space with Oxbash [36] and
the WBT interaction [37] shown in Table I (here the active
orbitals are 0p3=2 and 0p1=2 and only 2p2h excitations
toward the sd orbitals are allowed), and (ii) in the
0p1s0d valence space with Nushellx [38] and a new inter-
action [39]. With the WBT interaction, we find good
agreement for the energies of the listed states, while with
the new interaction the energies of excited states in 13N and
15N disagree by several MeV. Finally, we show the reduc-
tion factor Rs, also plotted in Figs. 4(a) and 4(b), for WS
and microscopic OFs, respectively. In the total uncertainty,
we set apart in a box the uncertainties originating from the
analysis: (i) imperfect knowledge of entrance and exit
potentials, and (ii) the variance in the calculation of rms
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FIG. 3 (color online). Radial dependence of (a), (b) the OFs for
WS and microscopic (SCGF) [30] form factors normalized to 1;
(c), (d) the OF difference $ (SCGF#WS).

TABLE I. The normalization C2Sexp for two OFs, phenomenological (WS) and microscopic (SCGF) [30]. For the WS OF, the
r0 values were chosen to reproduce RHFB

rms , except for
16O for which Rrms was taken from (e, e0p) data (see text). The SFs C2Sth are

obtained from shell-model calculations with the WBT interaction. In the second part, the analysis was performed with microscopic
OFs and SFs. The two errors for C2Sexp and Rs are the experimental and analysis errors.

RHFB
rms r0 C2Sexp C2Sth Rs C2Sexp C2Sth Rs

Reaction E' (MeV) J% (fm) (fm) (WS) 0pþ 2@! (WS) (SCGF) (SCGF) (SCGF)

14O (d, t) 13O 0.00 3=2# 2.69 1.40 1.69 (17)(20) 3.15 0.54(5)(6) 1.89(19)(22) 3.17 0.60(6)(7)
14O (d, 3He) 13N 0.00 1=2# 3.03 1.23 1.14(16)(15) 1.55 0.73(10)(10) 1.58(22)(2) 1.58 1.00(14)(1)

3.50 3=2# 2.77 1.12 0.94(19)(7) 1.90 0.49(10)(4) 1.00(20)(1) 1.90 0.53(10)(1)
16O (d, t) 15O 0.00 1=2# 2.91 1.46 0.91(9)(8) 1.54 0.59(6)(5) 0.96(10)(7) 1.73 0.55(6)(4)
16O (d, 3He) 15N [19,20] 0.00 1=2# 2.95 1.46 0.93(9)(9) 1.54 0.60(6)(6) 1.25(12)(5) 1.74 0.72(7)(3)

6.32 3=2# 2.80 1.31 1.83(18)(24) 3.07 0.60(6)(8) 2.24(22)(10) 3.45 0.65(6)(3)
18O (d, 3He) 17N [21] 0.00 1=2# 2.91 1.46 0.92(9)(12) 1.58 0.58(6)(10)
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the values deduced from 16Oðe; e0pÞ15Ngs and 15N3=2#
analyses [5], both states with large SFs. We thus adopted
the HFB radii calculated for the 0p wave functions for 14O
and 18O and deduced the corresponding values of r0. The
same calculation was done with other Skyrme interactions,
always in fair agreement with the 16Oðe; e0pÞ results, from
which we deduced a variance for r0.

The calculated angular distributions were normalized to
the data by a factor C2Sexp, which defines a so-called
experimental SF. C2Sexp are mainly sensitive to the most
forward angles, and so little sensitive to the details of the
nuclear potentials. C2Sexp strongly depend on radii with
!SF=SF $ 6!rrms=rrms in the 14Oðd; tÞ analysis.

We first reanalyzed published data for single nucleon
pickup reactions at about the same incident energy in direct
kinematics [19–21] on 16O and 18O targets. The angular
distributions were well reproduced in all cases by CRC
calculations. For 16Oðd; 3HeÞ at 14 and 26 MeV=nucleon,
we obtained same C2Sexp, which confirms the energy in-
dependence of the analysis. For the 14O (d, 3He) and
14O (d; t) transfers, the shape of the angular distributions
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assuming a !l ¼ 1 transferred angular momentum, as
expected from the transfer of a 0p nucleon.
In the second approach, we employed ab initio SFs and

OFs obtained from the single-particle Green’s function in
the third order algebraic diagrammatic construction
method [ADC(3)] [14,32]. Calculations were based on
chiral two-body next-to-next-to-next-to leading order
(N3LO) [33] plus three-body next-to-next-to leading order
(N2LO) [34] interactions evolved to a cutoff ! ¼
1:88 fm#1, as introduced in Ref. [35]. All microscopic
OFs were further rescaled in coordinate space by the
same factor (i.e., introducing only one phenomenological
correction) to account for differences of predicted [30] and
experimental rms radius of 16O. The OFs corresponding to
the removal of main peaks at large and small nucleon
separation energies are shown in Figs. 3(a) and 3(b),
respectively, and compared to the Wood-Saxon prescrip-
tion. We note very little radial difference in the removal of
the strongly bound neutron in 14O.
We give in Table I the normalizations C2Sexp for the two

kinds of OFs. From theoretical SFs inputs, either micro-
scopic ab initio SFs [30] or shell-model SFs, we obtain a
theoretical value "thð#Þ and the reduction factor Rs ¼
"expð#Þ="thð#Þ. For shell-model SFs, we performed two
calculations with different valence space and interaction:
(i) in the 0pþ 2@! valence space with Oxbash [36] and
the WBT interaction [37] shown in Table I (here the active
orbitals are 0p3=2 and 0p1=2 and only 2p2h excitations
toward the sd orbitals are allowed), and (ii) in the
0p1s0d valence space with Nushellx [38] and a new inter-
action [39]. With the WBT interaction, we find good
agreement for the energies of the listed states, while with
the new interaction the energies of excited states in 13N and
15N disagree by several MeV. Finally, we show the reduc-
tion factor Rs, also plotted in Figs. 4(a) and 4(b), for WS
and microscopic OFs, respectively. In the total uncertainty,
we set apart in a box the uncertainties originating from the
analysis: (i) imperfect knowledge of entrance and exit
potentials, and (ii) the variance in the calculation of rms
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TABLE I. The normalization C2Sexp for two OFs, phenomenological (WS) and microscopic (SCGF) [30]. For the WS OF, the
r0 values were chosen to reproduce RHFB

rms , except for
16O for which Rrms was taken from (e, e0p) data (see text). The SFs C2Sth are

obtained from shell-model calculations with the WBT interaction. In the second part, the analysis was performed with microscopic
OFs and SFs. The two errors for C2Sexp and Rs are the experimental and analysis errors.
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Reaction E' (MeV) J% (fm) (fm) (WS) 0pþ 2@! (WS) (SCGF) (SCGF) (SCGF)

14O (d, t) 13O 0.00 3=2# 2.69 1.40 1.69 (17)(20) 3.15 0.54(5)(6) 1.89(19)(22) 3.17 0.60(6)(7)
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! Analysis of 14O(d,t)13O and 14O(d,3He)13N transfer reactions @ SPIRAL!

-  Overlap functions and strengths from GF 

-  Rs independent of asymmetry!

[F. Flavigny et al, PRL110, 122503 (2013)] 

radii (and consequently of r0) due to different Skyrme
interactions, provided the rms radii of 15N extracted from
(e, e0p) [5] are reproduced. All the other experimental
uncertainties are accounted for by the error bars displayed
on Fig. 4. A rather flat trend is found without the need
for the large asymmetry dependence suggested by inter-
mediate energy knockout data analyzed with the eikonal
formalism [10]. For a quantitative evaluation, we fitted
the reduction factor with a linear dependence Rs¼
!"!Sþ". We obtained mean values for ! and " with
associated errors from a minimization over the 48 data sets,
considering (i) eight combinations of optical potentials for
the entrance and exit channels, (ii) three Skyrme interac-
tions to calculate the rms radii, and (iii) the two above-
mentioned shell-model calculations.

For the WS OF, the reduction factor Rs ¼ 0:538ð28Þð18Þ
(for !S ¼ 0 nuclei) is in agreement with Ref. [9] and the
slope parameter ! ¼ 0:0004ð24Þð12Þ MeV&1, therefore
consistent with zero. The first standard error obtained
over one data set depends on the experimental uncertain-
ties; the second one comes from the distribution over the 48
data sets. Within the error bars, the data do not contradict
the weak dependence found by ab initio calculations, with
!0 ¼ &0:0039 MeV&1 between the two 14O points in
Ref. [7], although the calculated !S is much reduced
compared to the experimental value.

Despite different OFs and SFs, the analysis
performed with the ab initio OF [30] provides very
similar results with Rsð!S¼0Þ¼0:636ð34Þð42Þ and !¼
&0:0042ð28Þð36ÞMeV&1, with calculated !S¼17:6MeV
[Fig. 4(b)].
In summary, we measured exclusive differential cross

sections at 18 MeV=nucleon for the 14Oðd; tÞ13O and
14Oðd; 3HeÞ13N transfer reactions and elastic scattering.
WS OFs with a constraint on HF radii and microscopic
OFs (obtained from SCFG theory) have been compared for
the first time for symmetric and very asymmetric nuclei
and gave similar results. We extracted the reduction factors
Rs over a high asymmetry range, !S ¼ '18:5 MeV, for
oxygen isotopes. From the good agreement between the
CRC calculations and the set of transfer data highlighted in
our work, the asymmetry dependence is found to be non-
existent (or weak), within the error bars. This result is in
agreement with ab initio Green’s function and coupled-
cluster calculations [7,14], but contradicts the trend
observed in nucleon knockout data obtained at incident
energies below 100 MeV=nucleon and analyzed with the
sudden-eikonal formalism. The disagreement of the two
systematic trends from knockout and transfer calls for a
better description of so-called direct reaction mechanisms
in order that a consistent picture of nuclear structure
emerges from measurements at different incident energies.
The authors thank N. T. Timofeyuk and N. Alamanos for

enlightening discussions and P. Navrátil for providing
evolved two- and three-body interactions relevant to this
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!  induced and full3NF investigated 
! genuine (N2LO) 3NF needed to reproduce the energy curvature and S2n 

! N=20 and Z=20 gaps overestimated! 
! Full 3NF give a correct trend but over bind! 
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! First ab-initio calculation over a contiguous portion of the nuclear 
chart—open shells are now possible through the Gorkov-GF formalism 

Neighbouring Ar, K, Ca, Sc, and Ti chains 

18 20 22 24 26 28 30 32
0

10

20

30

40

50

60

N

S 2
n [

M
eV

]

Ar

K

Ca
Sc

Ti

Two-neutron separation energies predicted by chiral  NN+3NF forces:!



V.!Somà,!CB!et*al.!Phys.!Rev.!C89,!061301R!(2014)!

Neighbouring Ar, K, Ca, Sc, and Ti chains 

Works well in 
the pf shell!
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imental data on the energy of the first-excited state is
needed to further test the validity of both models.

Very recently, ab initio calculations of open-shell nu-
clei have become possible in the Ca region [48] on the
basis of the self-consistent Gorkov-Green‘s function for-
malism [49]. State-of-the-art chiral two- (NN) [50, 51]
and three-nucleon (3N) [52] interactions adjusted to two-
, three- and four-body observables (up to 4He) are em-
ployed, without any further modification, in the com-
putation of systems containing several tens of nucleons.
We refer to Ref. [48] for further details. In the present
study, Gorkov-Green’s function calculations of the low-
est 1/2+ and 3/2+ states in 43�51K have been performed
by removing a proton from 44�52Ca. Similarly to Fig. 5,
the upper panel of Fig. 6 compares the results to exper-
imental data. The inversion of the states at N = 28 is
not obtained in the calculation, because odd-A spectra
are systematically too spread out [48]. This shortcom-
ing actually correlates with the systematic overbinding of
neighboring even-A ground-states. Still, one observes the
correct relative evolution of the 1/2+ state with respect to
the 3/2+ when going from 43K to 47K and then from 47K
to 49K. As a matter of fact, rescaling the theoretical re-
sults to the experimental ones at, e.g. 47K, demonstrates
that the relative evolution of the two states is quantita-
tively well reproduced. This result is very encouraging for
those first-ever systematic ab initio calculations in mid-
mass nuclei. Indeed, it allows one to speculate that cor-
recting in the near future for the systematic overbinding
produced in the Ca region by currently available chiral
EFT interactions, and thus the too spread out spectra of
odd-A systems, might bring the theoretical calculation in
good agreement with experiment. Although this remains
to be validated, it demonstrates that systematic spec-
troscopic data in mid-mass neutron-rich nuclei provide
a good test case to validate/invalidate specific features
of basic inter-nucleon interactions and innovative many-
body theories.

To complement the above analysis, the lower panel
of Fig. 6 provides the evolution of proton 1d

3/2 and
2s

1/2 shells. These two e↵ective single-particle energies
(ESPEs) recollects [49] the fragmented 3/2+ and 1/2+

strengths obtained from one-proton addition and removal
processes on neighboring Ca isotones. Within the present
theoretical description, the evolution of the observable
(i.e. theoretical-scheme independent) lowest-lying 1/2+

and 3/2+ states does qualitatively reflect the evolution
of the underlying non-observable (i.e. theoretical-scheme
dependent) single-particle shells. As such, the energy gap
between the two shells decreases from 4.81MeV in 43K to
2.39MeV in 47K, which is about 50% reduction. Adding
4 neutrons in the ⌫2p

3/2 causes the energy di↵erence to
increase again to 4.49MeV.

FIG. 6. (color online) Upper panel: energy di↵erence between
the lowest 1/2+ and 3/2+ states obtained in 43�51K from ab
initio Gorkov-Green‘s function calculations and experiment.
Lower panel: ⇡d

3/2 and ⇡s
1/2 e↵ective single-particle energies

in 43�51K.

B. Even-A

The configuration of the even-K isotopes arises from
the coupling between an unpaired proton in the sd shell
with an unpaired neutron. Di↵erent neutron orbits are
involved: starting from 38K where a hole in the ⌫1d

3/2

is expected, then gradually filling the ⌫1f
7/2 and finally,

the ⌫2p
3/2 for 48,50K.

In order to investigate the composition of the ground-
state wave functions of the even-K isotopes, we first com-
pare the experimental magnetic moments to the empiri-
cal values. Based on the additivity rule for the magnetic
moments (g factors) and assuming a weak coupling be-
tween the odd proton and the odd neutron, the empirical
magnetic moments can be calculated using the following
formula [53]: µ

emp

= g
emp

· I, with

g
emp

= g(j⇡)+g(j⌫)
2

+ g(j⇡)�g(j⌫)
2

j⇡(j⇡+1)�j⌫(j⌫+1)

I(I+1)

, (5)

where g(j⇡) and g(j⌫) are the g factors of the nuclei with
an odd proton or neutron from the corresponding orbit
and I the total spin. The calculations were performed
using the measured g factors of the neighboring isotopes
with the odd-even and even-odd number of particles in j⇡
and j⌫ , respectively. For the empirical values of unpaired
protons, results from Table III were used. The g factors
for the odd neutrons were taken from the corresponding
Ca isotones [54–57]. The obtained results with the list of
isotopes used for di↵erent configurations are presented in
Table VI.
A comparison between the experimental and empiri-

cal g factors is shown in Fig. 7. For 38K, the empirical
value calculated from 39K and 39Ca provides excellent

2

⇡2s
1/2 and ⇡1d

3/2 levels is predicted to occur at N = 28
and returns to a ”normal” ordering approaching N = 40
(Fig 1(c) in Ref. [11]). The reordering of the orbitals is
driven by the monopole part of the proton-neutron inter-
action which can be decomposed into three components:
the central, vector and tensor. Initially Otsuka et al. [12]
suggested that the evolution of the ESPEs is mainly due
to the tensor component. However, in more recent publi-
cations [11, 13, 14] several authors have shown that both
the tensor term as well as the central term have to be
considered.
Regarding the shell model, potassium isotopes are ex-

cellent probes for this study, with only one proton less
than the magic number Z = 20. Nevertheless, little and
especially conflicting information is available so far for
the neutron-rich K isotopes. Level schemes based on the
tentatively assigned spins of the ground state were pro-
vided for 48K [15] and 49K [16]. In addition, an exten-
sive discussion was presented by Gaudefroy [17] on the
energy levels and configurations of N = 27, 28 and 29
isotones in the shell-model framework and compared to
the experimental observation, where available. However,
the predicted spin of 2� for 48K, is in contradiction with
I⇡ = (1�) proposed by Królas et al. [15]. In addition,
the nuclear spin of the ground state of 50K was proposed
to be 0� [18, 19] in contrast to the recent � decay stud-
ies where it was suggested to be 1� [20]. The ground
state spin-parity of 49K was tentatively assigned to be
(1/2+) by Broda et al. [16], contrary to the earlier ten-
tative (3/2+) assignment from beta-decay spectroscopy
[21]. For 51K, the nuclear spin was tentatively assigned
to be 3/2+ by Perrot et al. [19].
Our recent hyperfine structure measurements of K iso-

topes using the collinear laser spectroscopy technique
gave the answer to the question as to what happens with
the proton sd orbits for isotopes beyond N = 28. By es-
tablishing the nuclear spins of 49K and 51K to be 1/2 and
3/2 [22] respectively, the evolution of these two states in
the K isotopes is firmly ascertain. This is presented in
Fig. 1 for isotopes from N = 18 up to N = 32 where
the inversion of the states is observed at N = 28 fol-
lowed by the reinversion back at N = 32. In addition,
we have confirmed a spin-parity 1� for 48K and 0+ for
50K [26]. The measured magnetic moments of 48�51K
were not discussed in detail so far and will be presented
in this article. Additionally, based on the comparison
between experimental data and shell-model calculations,
the configuration of the ground-state wave functions will
be addressed as well.

II. EXPERIMENTAL PROCEDURE

The experiment was performed at the collinear
laser spectroscopy beam line COLLAPS [27] at
ISOLDE/CERN. The radioactive ion beam was produced
by 1.4-GeV protons (beam current ⇠1.7µA) imping-
ing on a thick UC

x

target (45 g/cm2). Ionization of
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FIG. 1. (color online) Experimental energies for 1/2+ and
3/2+ states in odd-K isotopes. Inversion of the nuclear spin
is obtained in 47,49K and reinversion back in 51K. Results are
taken from [16, 23–25]. Ground-state spin for 49K and 51K
were established [22].
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FIG. 2. (color online) Shematic representation of the setup
for collinear laser spectroscopy at ISOLDE.

the resulting fragments was achieved by the surface ion
source. The target and the ionizing tube were heated
to ⇠2000 0C. The accelerated ions (up to 40 kV) were
mass separated by the high resolution separator (HRS).
The gas-filled Paul trap (ISCOOL) [28, 29] was used for
cooling and bunching of the ions. Multiple bunches per
proton pulse were created by closing ISCOOL for ⇠90ms
per bunch. The bunched ions were guided to the setup
for collinear laser spectroscopy where they were super-
imposed with the laser. A schematic representation of
the beam line for collinear laser spectroscopy is shown in
Fig. 2.
A cw titanium:sapphire (Ti:Sa) laser was locked to the

4s 2S
1/2 ! 4p 2P

1/2 transition at 769.9 nm, providing
⇠1mW power into the beam line. An applied voltage
of ±10 kV on the charge exchange cell (CEC) provided
the Doppler tuning for the ions, which were neutralized
through the collisions with K vapor. Scanning of the hfs
was performed by applying an additional voltage in a
range of ±500V. The resonance photons were recorded
by four photomultiplier tubes (PMT) placed immediately
after the CEC. By gating the signal on the PMTs to the
fluorescence photons from the bunches, the signal was
only recorded for ⇠6µs when the bunches were in front
of the PMTs. Consequently, the background related to
the scattered laser light was suppressed by a factor ⇠ 104

(6µs/90ms). More details about the setup can be found

J. Papuga, et al., PRL 110, 172503 (2013) 
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lowed by the reinversion back at N = 32. In addition,
we have confirmed a spin-parity 1� for 48K and 0+ for
50K [26]. The measured magnetic moments of 48�51K
were not discussed in detail so far and will be presented
in this article. Additionally, based on the comparison
between experimental data and shell-model calculations,
the configuration of the ground-state wave functions will
be addressed as well.

II. EXPERIMENTAL PROCEDURE

The experiment was performed at the collinear
laser spectroscopy beam line COLLAPS [27] at
ISOLDE/CERN. The radioactive ion beam was produced
by 1.4-GeV protons (beam current ⇠1.7µA) imping-
ing on a thick UC

x

target (45 g/cm2). Ionization of

39K 41K 43K 45K 47K 49K 51K

2522

980

561 474 359
92

1371

37K

1/2+

1/3+

En
er

gy
 (k

eV
)

FIG. 1. (color online) Experimental energies for 1/2+ and
3/2+ states in odd-K isotopes. Inversion of the nuclear spin
is obtained in 47,49K and reinversion back in 51K. Results are
taken from [16, 23–25]. Ground-state spin for 49K and 51K
were established [22].

Continuous ion beam
from HRS

ISCOOL

Mirror

Laser

Electrostatic 
deflectors

Charge exchange 
cell 

Photomultiplier 
tubesPost-acceleration

voltage

Ions

Atoms

FIG. 2. (color online) Shematic representation of the setup
for collinear laser spectroscopy at ISOLDE.

the resulting fragments was achieved by the surface ion
source. The target and the ionizing tube were heated
to ⇠2000 0C. The accelerated ions (up to 40 kV) were
mass separated by the high resolution separator (HRS).
The gas-filled Paul trap (ISCOOL) [28, 29] was used for
cooling and bunching of the ions. Multiple bunches per
proton pulse were created by closing ISCOOL for ⇠90ms
per bunch. The bunched ions were guided to the setup
for collinear laser spectroscopy where they were super-
imposed with the laser. A schematic representation of
the beam line for collinear laser spectroscopy is shown in
Fig. 2.
A cw titanium:sapphire (Ti:Sa) laser was locked to the
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1/2 transition at 769.9 nm, providing
⇠1mW power into the beam line. An applied voltage
of ±10 kV on the charge exchange cell (CEC) provided
the Doppler tuning for the ions, which were neutralized
through the collisions with K vapor. Scanning of the hfs
was performed by applying an additional voltage in a
range of ±500V. The resonance photons were recorded
by four photomultiplier tubes (PMT) placed immediately
after the CEC. By gating the signal on the PMTs to the
fluorescence photons from the bunches, the signal was
only recorded for ⇠6µs when the bunches were in front
of the PMTs. Consequently, the background related to
the scattered laser light was suppressed by a factor ⇠ 104
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Change in separation described by chiral NN+3NF:!

AK isotopes!

(Gorkov calculations at 2nd order)!ESPE: “centroid” energies!

Laser spectroscopy @ ISOLDE!
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!   Error bar in predictions are from 
extrapolating the many-body 
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! Large J in free space SRG matter (must pay attention to its convergence) 
! Overall conclusions regarding over binding and S2n remain but details change 

Calculations based on ramps D, N1, N2:!
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! In general over binding per nucleon (E/A) appear to stabilize above 
A~40-50 but more investigations are required. 

Difference of calculated BEs to the experiment 
for different masses:!
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�  What to did we learn about realistic chiral forces from ab-initio calculation ? 

!   Leading order 3NF are crucial to predict many important features that  
are observed experimentally (drip lines, saturation, orbit evolution, etc…) 

!   Experimental binding is predicted accurately up to the lower sd shell 
(A≈30) but deteriorates for medium mass isotopes (Ca and above) with 
roughly 1 MeV/A over binding. 

!   This hints to the need of more repulsion in  
future generations of chiral realistic forces. 

 
 
 
 
 
 

18 20 22 24 26 28 30 32

0

10

20

30

40

50

60

N
S 2

n [
M

eV
]

Ar
K

Ca
Sc

Ti

Conclusions  



�  What to did we learn about realistic chiral forces from ab-initio calculation ? 

!   Leading order 3NF are crucial to predict many important features that  
are observed experimentally (drip lines, saturation, orbit evolution, etc…) 

!   Experimental binding is predicted accurately up to the lower sd shell 
(A≈30) but deteriorates for medium mass isotopes (Ca and above) with 
roughly 1 MeV/A over binding. 

!   This hints to the need of more repulsion in  
future generations of chiral realistic forces. 

 
 
 
 
 
 

18 20 22 24 26 28 30 32

0

10

20

30

40

50

60

N
S 2

n [
M

eV
]

Ar
K

Ca
Sc

Ti

Conclusions  

Thank you for 
your 

attention!!!�



!

!

!
!

!

"

"

"
"

"

! !

! !

!

"

"

"
"

"

!

!

!
!

!

!!

"

"

"

"

"

2s1!2
1d5!2

1d3!2

!8

!6

!4

!2

0

2

4

6

Ε iA
#
1
"MeV

# 2N$3N$full%2N$3N$ind%

 
!   d3/2 raised by genuine 3NF 

!   systematic underestimation of radii!

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm-1) 
N2LO (Λ = 400Mev/c) chiral 3N interaction  evolved (2.0fm-1)!

 A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) 
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Ca spectral distributions – at 2nd order 
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Pairing gaps

! Three-point mass differences

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ⇥ (1 + P12 P23 + P13 P23)(1� P23)

= 1� P12 � P13 � P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ⇥ ⇤1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⌅

⇥ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
� (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
� (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
� (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ⇥ ⇥a ⇥b (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ⇥ ⇥a ⇥c ⇤1:ā; 2:b|V NN |1:c̄; 2:d⌅ , (8)

V̄ NN
āb̄c̄d̄ ⇥ ⇥a ⇥b ⇥c ⇥d ⇤1:ā; 2:b̄|V NN |1:c̄; 2:d̄⌅ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |⇤N

0 ⌅, so-
lution of

H |⇤N
k ⌅ = EN

k |⇤N
k ⌅ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

iGab(t, t
⇥) ⇥ ⇤⇤N

0 |T
⇧
aa(t)a

†
b(t

⇥)
⌃
|⇤N

0 ⌅ , (11)

Gab(⌅) =

⇥
d (t� t⇥) ei�(t�t�) Gab(t, t

⇥) (12)

⇤Ô⌅ =
�

ab

⇥
d⌅

2⇤
Oab Gab(⌅) (13)

Ô =
�

ab

Oab a
†
a ab (14)

⇤T̂ ⌅ =
�

ab

⇥
d⌅

2⇤
tab Gab(⌅) (15)

⇤Ĥ⌅ = E0 =
�

ab

⇥
d⌅

2⇤
[tab + ⌅ �ab] Gab(⌅) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ⇥ exp[iHt] ab exp[�iHt] , (17a)

a†b(t) =
⇤
a(H)
b (t)

⌅†
⇥ exp[iHt] a†b exp[�iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.

The equations of motion for the Green’s functions take
the form of a set of N coupled integro-di⌅erential equa-
tions, each of them involving the (i� 1)-, i- and (i+ 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy ⇥ and the derivation of Dyson’s equation

�(3)
n (A) =

(�1)A

2
[EA+1

0 � 2EA
0 + EA�1

0 ] (18)

a

c

d

b

⇥R
cd(⌅) (19)

Gab(⌅) = G(0)
ab (⌅) +

�

cd

G (0)
ac (⌅)⇥⇥

cd(⌅)Gdb(⌅) (20)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
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Pairing gaps

! Inversion of odd-even staggering

" Second order and 3NF necessary to invert the staggering
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