Existence of Exotic Torus Isomer States and Their Precession Motion

Takatoshi Ichikawa (YITP)

Collaborators:
K. Matsuyanagi, J.A. Maruhn, N. Itagaki

Rotation about the symmetry axis

The equator part is expanded due to the centrifugal force

\rightarrow Moment of inertia increases

Example: The earth

The rotation about the symmetry axis is quantum-mechanically forbidden

Spin alignments

non-collective motion

By spin alignments which break the time-reversal symmetry, quantum objects can have the angular momentum about the symmetry axis

Objective

- A drastic example:

If many nucleons breaking the time-reversal symmetry rotates about the symmetry axis
\rightarrow torus configuration

- Search for stable torus isomers in high-spin states from ${ }^{28} \mathrm{Si}$ to ${ }^{56} \mathrm{Ni}$ using the cranked Hartree-Fock (HF) method
- How is their excited states?
\rightarrow Precession motion
\rightarrow Describe the precession motion using the time-dependent Hartree-Fock (TDHF) method

Density distribution of a stable solution

$$
\hbar \omega=1.2 \mathrm{MeV}
$$

Cranked 3D Hartree-Fock method
\rightarrow Code Sky3d

User: ichikgwa
fin Dec 14222533
2012

$E_{x}=170.45 \mathrm{MeV}$

Convergence of $K\left(J_{z}\right)$

Alignments of orbital angular momentum

$\Lambda \rightarrow \ell_{z}$ Good quantum number Neutron	$\begin{aligned} & \text { (i) } K=20 k \\ & 5 \pi \times 2 \times 2 \end{aligned}$	$\left\|\begin{array}{l} (\text { (ii) } K=60 \hbar \\ (4 \hbar+5 \hbar+6 \hbar) \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { (iii) } K=100 \hbar \\ & (3 \hbar+4 \pi+5 \hbar \\ & 6 \hbar+7 \hbar) \end{aligned}\right.$
$\|\wedge\|-\Lambda+\Lambda$			$\times 2 \times 2$
Ground state	insunticent		
6		－	¢
5 －－－－－	－－	－	－
$4-\phi$－－${ }^{\text {d }}$ 中－		－	－－
$3-\phi$－－${ }^{\text {d }}$－		－中－－－中 ${ }^{\text {d }}$	－
		中 ${ }_{\text {d }}$－	＋
$1-\phi$－－${ }^{\text {d }}$－		¢ ${ }_{\text {－}}$	－
0 －${ }^{\text {－}}$	－中－		

Systematics of torus isomers

System	$\begin{gathered} J_{z} \\ (\hbar) \\ (\hbar) \end{gathered}$	$\begin{gathered} E_{\mathrm{ex}} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} \rho_{0} \\ \left(\mathrm{fm}^{-3}\right) \end{gathered}$	$\begin{gathered} R_{0} \\ (\mathrm{fm}) \end{gathered}$	$\begin{gathered} d \\ (\mathrm{fm}) \end{gathered}$	$\begin{gathered} \mathscr{T}_{\perp} \\ \left(\hbar^{2} / \mathrm{MeV}\right) \end{gathered}$	$\begin{gathered} \mathscr{T}_{\\|} \\ \left(\hbar^{2} / \mathrm{MeV}\right) \end{gathered}$
(SLy6)							
${ }^{36} \mathrm{Ar}$	36	123.89	0.137	5.12	1.62	14.3	26.4
${ }^{40} \mathrm{Ca}$	60	169.71	0.129	6.07	1.61	21.1	39.6
${ }^{44} \mathrm{Ti}$	44	151.57	0.137	6.30	1.61	24.6	46.5
${ }^{48} \mathrm{Cr}$	72	191.25	0.132	7.19	1.6	33.8	64.7
${ }^{52} \mathrm{Fe}$	52	183.32	0.138	7.47	1.60	39.1	75.1
(SkI3)							
${ }^{36} \mathrm{Ar}$	36	125.15	0.146	5.01	1.58	13.7	25.3
${ }^{40} \mathrm{Ca}$	60	173.52	0.138	5.90	1.58	19.9	37.5
${ }^{44} \mathrm{Ti}$	44	153.0	0.146	6.17	1.58	23.	44.6
${ }^{48} \mathrm{Cr}$	72	193.66	0.141	7.00	1.57	32.0	61.3
${ }^{52} \mathrm{Fe}$	52	183.70	0.147	7.31	1.57	37.5	71.9
(SkM^{*})							
${ }^{36} \mathrm{Ar}$	36	124.80	0.131	5.16	1.65	14.6	26.9
${ }^{40} \mathrm{Ca}$	60	167.84	0.122	6.17	1.64	21.8	41.0
${ }^{44} \mathrm{Ti}$	44	152.20	0.131	6.36	1.64	25.1	47.5
${ }^{48} \mathrm{Cr}$	72	192.40	0.125	7.30	1.63	34.9	66.7
${ }^{52} \mathrm{Fe}$	52	187.08	0.131	7.55	1.63	40.0	76.7

Density: $\quad \rho \sim 2 / 3 \rho_{0}$
Width: similar to α particle

Macroscopic circulating current of nucleons

${ }^{40} \mathrm{Ca}$

How is the moment of inertia for the rotation about an axis perpendicular to the symmetry axis when macroscopic circulating current occurs?

Precession motion

The torus isomer has a very large angular momentum about the symmetry axis

If we give an impulsive force to the symmetry axis
\rightarrow Precession motion starts

Describe the precession motion using TDHF method
cf. a top in zero gravity

Time evolution of density distribution

- TDHF equation $\quad i \hbar \dot{\rho}=[\hat{h}, \rho] \quad \rightarrow$ Code Sky3d
- give an impulsive force at $t=0$ by an external field

$$
\rightarrow I=K+1=61 \hbar
$$

One period: $T_{\text {prec }}=403.0 \mathrm{fm} / \mathrm{c}$

$$
\begin{aligned}
& \omega_{\text {prec }}=\frac{2 \pi}{T_{\text {prec }}}=3.08 \mathrm{MeV} / \hbar \\
& \mathscr{T}_{\perp}^{\mathrm{TDHF}}=\frac{I}{\omega_{\perp}}=19.8 \hbar^{2} / \mathrm{MeV} \\
& \rightarrow \mathscr{T}_{\perp}^{\text {rid }}=21.1 \hbar^{2} / \mathrm{MeV} \\
& \rightarrow \mathscr{T}_{\perp}^{\mathrm{RPA}}=19.6 \hbar^{2} / \mathrm{MeV}
\end{aligned}
$$

Summary

- We find stable isomers with the exotic torus configuration in high-spin states from ${ }^{36} \mathrm{Ar}$ to ${ }^{52} \mathrm{Fe}$
- To build the torus isomer of ${ }^{40} \mathrm{Ca}$ with $K=60 \hbar$, totally 12 nucleons with \wedge $=+4,+5$, and +6 are aligned with the symmetry axis in both proton and neutron
- We also describe the precession motion of torus isomers using the TDHF method and the obtained moments of inertia for the rotation about an axis perpendicular to the symmetry axis are almost the rigid-body values
- By comparing to the RPA calculation, we found that the precession motion obtained by the TDHF calculation corresponds to the excited mode generated by coherent superposition of many 1 p-1h excitations

PRL 109, 232503 (2012); PRC 89, $011305(\mathrm{R})(2014)$

