Phase-space representation for nuclear potentials

Dennis Weber1,2, Hans Feldmeier2,3, Thomas Neff2

1ExtreMe Matter Institute EMMI and Research Division,2GSI Helmholtzzentrum für Schwerionenforschung3Frankfurt Institute for Advanced Studies

ARIS2014
2nd Conference on Advances in Radioactive Isotope Science
Tokyo, Japan
June 1-6, 2014
Outline

Nucleon-nucleon interaction
- Realistic NN potentials
- Unitary transformations and effective interactions

Phase-space representation
- Kirkwood representation
- Momentum dependence in phase-space representation
- Results for realistic NN potentials
NN interaction and correlations

Realistic NN potentials

- describing two-nucleon properties (scattering, deuteron) with high accuracy
- different potentials available, e.g.
 - Argonne V18 \(\text{Wiringa, Stoks, Schiavilla, PRC 51, 38 (1995)} \)
 - \(N^3 \text{LO from Chiral effective field theory} \) \(\text{Entem, Machleidt, PRC 68, 041001 (2003)} \)

\(S = 1, \ T = 0 \)

- repulsive core: nucleons can not get closer than \(\approx 0.5 \text{ fm} \) → central correlations
- strong dependence on the orientation of the spins due to the tensor force → tensor correlations
- the nuclear force will induce strong short-range correlations in the nuclear wave function
NN interaction and correlations

Realistic NN potentials

- describing two-nucleon properties (scattering, deuteron) with high accuracy
- different potentials available, e.g.
 - Argonne V18 [Wiringa, Stoks, Schiavilla, PRC 51, 38 (1995)]
 - N³LO from Chiral effective field theory [Entem, Machleidt, PRC 68, 041001 (2003)]

S = 1, T = 0

- repulsive core: nucleons can not get closer than ≈ 0.5 fm \rightarrow central correlations
- strong dependence on the orientation of the spins due to the tensor force \rightarrow tensor correlations
- the nuclear force will induce strong short-range correlations in the nuclear wave function

Use unitary transformations to obtain “soft” effective realistic interaction
Unitary Correlation Operator Method

- NN interaction induces strong **central** and **tensor correlations**
 → Many-body methods working with (superpositions of) Slater determinants require huge model space sizes

Unitary Correlation Operator Method (UCOM):
Unitary transformation C imprints correlation on simple model state $|\Psi\rangle$

$$|\hat{\Psi}\rangle = C |\Psi\rangle = C_\Omega C_r |\Psi\rangle$$

- Work with transformed operators and simple model states, e.g.

$$\langle \hat{\Psi} | H | \hat{\Psi}' \rangle = \langle \Psi | C^\dagger HC | \Psi' \rangle =: \langle \Psi | H_{\text{eff}} | \Psi' \rangle$$

- H_{eff} for local NN potential (e.g. Argonne V18) contains **quadratic momentum dependence** replacing short-range repulsion and short-range tensor:

$$H_{\text{eff}} = C_r^\dagger \left(\frac{\vec{p}^2}{2\mu} + V(r) \right) C_r = \frac{\vec{p}^2}{2\mu} + V_{\text{eff}}(r, p)$$

Similarity Renormalization Group

- **Similarity Renormalization Group (SRG):**

 Evolve Hamiltonian and unitary transformation matrix

 \[
 \frac{dH_\alpha}{d\alpha} = (2\mu)^2 \left[[T_{\text{int}}, H_\alpha], H_\alpha \right] \rightarrow H_\alpha = U_\alpha^\dagger H U_\alpha
 \]

 - Unitary transformation \(U_\alpha \) to obtain “soft” effective realistic interaction
 - SRG drives the Hamiltonian towards a band-diagonal structure
 - Performed in matrix element representation \(\rightarrow \text{momentum dependence} \)?

AV18: \(\langle k(L0)J; T | V_\alpha | k'(L0)J; T \rangle \) in MeVfm\(^3\)

\[
\alpha = 0.00\text{fm}^4 \text{ (bare)}
\]
Similarity Renormalization Group

- **Similarity Renormalization Group (SRG):**

 Evolve Hamiltonian and unitary transformation matrix

 \[
 \frac{dH_\alpha}{d\alpha} = (2\mu)^2 \left[[T_{\text{int}}, H_\alpha], H_\alpha \right] \rightarrow H_\alpha = U_\alpha^\dagger H U_\alpha
 \]

- Unitary transformation \(U_\alpha \) to obtain “soft” effective realistic interaction
- SRG drives the Hamiltonian towards a band-diagonal structure
- Performed in matrix element representation → momentum dependence?

AV18: \(\langle k(L0)J; T | V_\alpha | k'(L0)J; T \rangle \) in MeVfm\(^3\)

\[\alpha = 0.01\text{fm}^4 \]
Similarity Renormalization Group

- **Similarity Renormalization Group (SRG):**

 Evolve Hamiltonian and unitary transformation matrix

\[
\frac{dH_\alpha}{d\alpha} = (2\mu)^2 \left[[T_{\text{int}}, H_\alpha], H_\alpha \right] \rightarrow H_\alpha = U_\alpha^\dagger H U_\alpha
\]

- Unitary transformation U_α to obtain “soft” effective realistic interaction
- SRG drives the Hamiltonian towards a band-diagonal structure
- Performed in matrix element representation → momentum dependence?

AV18: $\langle k(L0)j; T | V_\alpha | k'(L0)j; T \rangle$ in MeVfm3

$\alpha = 0.04$fm4
Representation of NN interactions

- effective realistic NN potentials given usually as momentum matrix elements
- can be used in many-body calculations with shell model or plane wave basis
- but not for Fermionic Molecular Dynamics and cluster models
- matrix element representation not intuitive, not transparent

Other representation to study and visualize NN potentials

- How does the potential look in position space?
- What happens to the repulsive core?
- What is the range of the interaction?
- What is the momentum dependence?

⇒ Phase-space representation
Phase-space representation

- **Kirkwood representation** [Kirkwood, Phys. Rev., 44, 31 (1933)]

 - **phase-space distribution** for a given state $|\phi\rangle$:
 \[
 f_{ps}(\vec{r}, \vec{p}) = (2\pi)^{3/2} \langle \vec{r}|\phi\rangle \langle \phi|\vec{p}\rangle \langle \vec{p}|\vec{r}\rangle
 \]

 - **phase-space representation** of an operator O:
 \[
 O_{ps}(\vec{r}, \vec{p}) = (2\pi)^{3/2} \langle \vec{r}|O|\vec{p}\rangle \langle \vec{p}|\vec{r}\rangle
 \]

 - **quantum expectation value** (analogue to classical expression)
 \[
 \langle O \rangle = \langle \phi|O|\phi\rangle = \int d^3r \int d^3p f^*_{ps}(\vec{r}, \vec{p}) O_{ps}(\vec{r}, \vec{p})
 \]

- Study phase-space representation of effective NN interactions

- Multipole expansion with Legendre polynomials P_Λ:
 \[
 V_{ps}(\vec{r}, \vec{p}) = \sum_\Lambda i^\Lambda V_\Lambda(r, p) P_\Lambda(\vec{r} \cdot \vec{p}).
 \]
Phase-space representation of local $V = V(r)$

$V_{\Lambda}(r, p)$ (arb. units)

$V(r) = \exp \left\{ -\frac{r^2}{2f^2} \right\}$

local: $V = V(r)$

$\rightarrow V_{ps}(\vec{r}, \vec{p}) = V(r) = V(r)P_0(\vec{r} \cdot \vec{p})$
Phase-space representation of \(V = \frac{1}{2} (\mathbf{p}^2 V(r) + V(r)\mathbf{p}^2) \)

\(V_\Lambda(r, \mathbf{p}) \) (arb. units)

\[
\begin{align*}
\Lambda = 0 & \quad \Lambda = 1 & \quad \Lambda = 2 \\
\end{align*}
\]

\[
V(r) = \exp \left\{ -\frac{r^2}{2m^2} \right\}
\]

quadratic momentum dependence:

\[
\rightarrow V_{ps}(\mathbf{r}, \mathbf{p}) = \left(V(r) p^2 - \frac{1}{2} V''(r) - \frac{V'(r)}{r} \right) - i \frac{V'(r)}{r} \mathbf{r} \cdot \mathbf{p}
\]

\[
= \left(V(r) p^2 - \frac{1}{2} V''(r) - \frac{V'(r)}{r} \right) P_0(\mathbf{r} \cdot \mathbf{p}) - i \frac{V'(r)}{r} r p P_1(\mathbf{r} \cdot \mathbf{p})
\]
Phase-space representation of $V = V(r) \hat{L}^2$

$V_\Lambda(r, p)$ (arb. units)

\[V(r) = \exp \left\{ -\frac{r^2}{2a^2} \right\} \]

quadratic angular momentum dependence: $V = V(r) \hat{L}^2$

\[
\rightarrow V_{ps}(\vec{r}, \vec{p}) = V(r)(\vec{r} \times \vec{p})^2 + 2iV(r)\vec{r} \cdot \vec{p} \\
= \frac{2}{3} V(r)(rp)^2 P_0(\hat{\vec{r}} \cdot \hat{\vec{p}}) + 2iV(r)rp P_1(\hat{\vec{r}} \cdot \hat{\vec{p}}) - \frac{2}{3} V(r)(rp)^2 P_2(\hat{\vec{r}} \cdot \hat{\vec{p}})
\]
Bare potentials in phase-space representation

$S=0$, $T=1$: $V_\Lambda(r, p)$ in MeV

AV18

- $\Lambda=0$
- $\Lambda=1$
- $\Lambda=2$
- $\Lambda=3$

N3LO

- $\Lambda=0$
- $\Lambda=1$
- $\Lambda=2$
- $\Lambda=3$
UCOM Argonne potential in phase-space representation

$S = 0, T = 1: V_{\Lambda}(r, p)$ in MeV

AV18

$\Lambda = 0$ $\Lambda = 1$ $\Lambda = 2$ $\Lambda = 3$
SRG Argonne potential in phase-space representation

\(S = 0, \ T = 1: \ V_\Lambda(r, p) \) in MeV

AV18

\(\Lambda = 0 \) \hspace{1cm} \(\Lambda = 1 \) \hspace{1cm} \(\Lambda = 2 \) \hspace{1cm} \(\Lambda = 3 \)
SRG potentials in phase-space representation

\(S = 0, \, T = 1: \, V_\Lambda(r, p) \) in MeV

AV18 SRG

N\(^3\)LO SRG
Local projection

Wendt et al. introduced the **local projection** of a potential

This is the same as the phase space representation for $\Lambda = 0$ and $p = 0$:

$$V_{loc}(r) = V_{\Lambda=0}(r, p = 0)$$

![Graph](image-url)
Summary

Realistic effective interactions
- UCOM and SRG soften the interaction by unitary transformation
- transformed interactions are non-local
- no “intuitive” picture in partial wave matrix element representation

Phase-space Representation
- investigate momentum-dependence
- non-locality reflected in p- and Λ-dependence
- form of regulators reflected in N^3LO phase-space representation
- AV18 UCOM has quadratic momentum-dependence
- AV18 and N^3LO SRG have more complicated momentum-dependence

Outlook
- extend phase-space representation to $S = 1$ channels
- what can we learn for the operator representation for effective interactions