Energy density optimization: UNEDF2

ARIS 2014

M. Kortelainen,^{1,2,3} J. McDonnell,^{2,3,4} W. Nazarewicz,^{2,3,5} E. Olsen,² P.-G. Reinhard,⁶ J. Sarich,⁷ N. Schunck,^{2,3,4} S. M. Wild,⁷ D. Davesne,^{8,9,10} J. Erler,¹¹ and A. Pastore¹²
¹Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 Jyväskylä, Finland
²Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
³Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
⁴Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
⁵Institute of Theoretical Physics, Warsaw University, ul. Hoża 69, PL-00681 Warsaw, Poland
⁶Institut für Theoretische Physik, Universität Erlangen, D-91054 Erlangen, Germany
⁷Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
⁸Université de Lyon, F-69622 Lyon, France
⁹Université de Lyon 1, Villeurbanne, France
¹⁰CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Lyon, France
¹¹Division of Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany

ARIS 2014, Jun 6, 2014

Skyrme energy density

$$H_t^{even}(r) = C_t^{\rho} \rho_t^2 + C_t^{\tau} \rho_t \tau_t + C_t^{\Delta \rho} \rho_t \Delta \rho_t + C_t^{\nabla J} \rho_t \nabla J_t + C_t^{J} J_t^2$$

$$C_{t}^{\rho} = C_{t0}^{\rho} + C_{tD}^{\rho} \rho_{0}^{\gamma}$$
, $t=0,1$

- Skyrme EDF is constructed from bilinear terms of density matrices and their derivatives up to the 2nd order
- Each term multiplied by a constant coupling constant (except density dependent C^ρ)
- Volume part of the ED can be parameterized with infinite nuclear matter parameters
- Coupling constants adjusted to experimental input

Energy density optimization: UNEDF0 and UNEDF1

•UNEDF1 included data on 4 fission isomers states (²²⁶U, ²³⁸U, ²⁴⁰Pu, ²⁴²Cm)

ARIS 2014, Jun 6, 2014

UNEDF0 and UNEDF1: Performance

ARIS 2014, Jun 6, 2014

Energy density optimization: UNEDF2

•Optimization of Skyrme-like ED with respect of 14 parameters at deformed HFB level: Tensor terms now included

$$\rho_{c}, E^{NM} / A, K^{NM}, a_{sym}^{NM}, L_{sym}^{NM}, M_{s}^{-1}$$

$$C_{0}^{\rho \Delta \rho}, C_{1}^{\rho \Delta \rho}, V_{0}^{n}, V_{0}^{\rho}, C_{0}^{\rho \nabla J}, C_{1}^{\rho \nabla J}, C_{0}^{J}, C_{1}^{J}$$

•Single particle energies included in the optimization. These are handled with blocked **HFB** calculations

- E_{exp} (MeV)

Ē

2

-4

-6

0

(a)

20

UNEDF2: M.K., J. McDonnell, W. Nazarewicz, E. Olsen, P.-G. Reinhard, J. Sarich, N. Schunck, S.M. Wild, D. Davesne, J. Erler, A. Pastore, Phys. Rev. C 89 054314 (2014)

UNEDF2: Global properties

RMS deviations of various observables

•Generally, UNEDF2 gives no or only marginal improvement over to UNEDF1

 \Rightarrow Novel EDF developments required to improve precision (see Jacek's talk)

ARIS 2014, Jun 6, 2014

Sensitivity analysis

- Sensitivity analysis shows that UNEDF2 fully ٠ constrained with the data
 - Major improvements not possible in \Rightarrow the Skyrme-EDF framework

- •With UNEDF0,1 and 2, a complete sensitivity analysis was done for the obtained minimum
- Standard deviations and correlations of optimized EDF parameters
- •Crucial information when addressing predictive power. E.g propagation of the error.

-0.25

-0.75

-0.5

Conclusions and outlook

- •UNEDF0, 1 and 2 presents a optimization scheme of Skyrme-like EDF, which includes progressively more experimental data.
- •Many UNEDF2 properties sligthly worse than with more specialiced UNEDF0 or UNEDF1. UNEDF2 is the best all-around Skyrme EDF
- •Sensitivity analysis shows that further major improvements for UNEDF2 are unlikely
- •Generally, limits of the Skyrme-like EDF models have been reached: Novel EDFs required to improve precision. This conclusion is also supported by several other studies.

- •Possible future directions: EDFs with higher order derivatives, DME-based functionals, regularized higher-order functionals.
- •Future EDF optimizations schemes should include sensitivity analysis to assess the predictive power of the model

Backup slides

UNEDF parameters

x	SLy4	UNEDF0	UNEDF1	UNEDF2
$\rho_{\rm c}$	0.16000	0.16053	0.15871	0.15631
E/A	-15.972	-16.056	-15.8	-15.8
Κ	229.901	230.0	220.0	239.930
$a_{\rm sym}$	32.004	30.543	28.987	29.131
Ĺ	45.962	45.080	40.005	40.0
$1/M_{s}^{*}$	1.439	0.9	0.992	1.074
$C_0^{ ho\Delta ec ho}$	-76.996	-55.261	-45.135	-46.831
$C_1^{ ho\Delta ho}$	+15.657	-55.623	-145.382	-113.164
V_0^n	-258.200	-170.374	-186.065	-208.889
V_0^p	-258.200	-199.202	-206.580	-230.330
$C_0^{ ho abla J}$	-92.250	-79.531	-74.026	-64.309
$C_1^{ ho abla J}$	-30.750	45.630	-35.658	-38.650
$C_0^{\bar{J}J}$	0.000	0.000	0.000	-54.433
C_1^{JJ}	0.000	0.000	0.000	-65.903

UNEDF2 parameters

x	$\hat{\pmb{x}}^{(ext{fin.})}$	σ	95% CI
$\rho_{\rm c}$	0.15631	0.00112	[0.154, 0.158]
E/A	-15.8		
Κ	239.930	10.119	[223.196, 256.663]
$a_{\rm sym}$	29.131	0.321	[28.600, 29.662]
Ĺ	40.0		
$1/M_{s}^{*}$	1.074	0.052	[0.988, 1.159]
$C_0^{ ho\Delta \widetilde{ ho}}$	-46.831	2.689	[-51.277, -42.385]
$C_1^{\rho\Delta ho}$	-113.164	24.322	[-153.383, -72.944]
V_0^n	-208.889	8.353	[-222.701, -195.077]
V_0^p	-230.330	6.792	[-241.561, -219.099]
$C_0^{ ho abla J}$	-64.309	5.841	[-73.968, -54.649]
$C_1^{\rho \nabla J}$	-38.650	15.479	[-64.246, -13.054]
C_0^{JJ}	-54.433	16.481	[-81.687, -27.180]
C_1^{JJ}	-65.903	17.798	[-95.334, -36.472]

UNEDF properties

