Low-lying Gamow-Teller excitations and betadecay properties of neutron-rich Zr isotopes

Niigata Univ.
Kenichi Yoshida

ARIS2014@Tokyo

β-decay half-lives in neutron-rich Zr isotopes

S. Nishimura et al., PRL106(2011)052502

Deformed Zr isotopes on the r-process path

T. Sumikama et al., PRL106(2011)202501

Self-consistent pnQRPA for spin-isospin responses in deformed nuclei
 starting point: Skyrme EDF $\mathcal{E}[\rho(\boldsymbol{r}), \tilde{\rho}(\boldsymbol{r})]$

variation w.r.t densities
The coordinate-space Hartree-Fock-Bogoliubov eq. for ground states
J. Dobaczewski et al., NPA422(1984)103

$$
\left(\begin{array}{cc}
h^{q}(\boldsymbol{r}, \sigma)-\lambda^{q} & \tilde{h}^{q}(\boldsymbol{r}, \sigma) \\
\tilde{h}^{q}(\boldsymbol{r}, \sigma) & -\left(h^{q}(\boldsymbol{r}, \sigma)-\lambda^{q}\right)
\end{array}\right)\binom{\varphi_{1, \alpha}^{q}(\boldsymbol{r}, \sigma)}{\varphi_{2, \alpha}^{q}(\boldsymbol{r}, \sigma)}=E_{\alpha}\binom{\varphi_{1, \alpha}^{q}(\boldsymbol{r}, \sigma)}{\varphi_{2, \alpha}^{q}(\boldsymbol{r}, \sigma)}
$$

"s.p" $\quad \delta \mathcal{E} \quad \tilde{L}^{q}=\delta \mathcal{E} \quad q=\nu, \pi$
"s.p." hamiltonian and pair potential: $\quad h^{q}=\frac{\delta \mathcal{E}}{\delta \rho^{q}}, \quad \tilde{h}^{q}=\frac{\delta \mathcal{E}}{\delta \tilde{\rho}^{q}}$

$$
\text { quasiparticle basis } \alpha, \beta \ldots
$$

The proton-neutron quasiparticle RPA eq. for excited states $\left[\hat{H}, \hat{O}_{\lambda}^{\dagger}\right]\left|\Psi_{\lambda}\right\rangle=\omega_{\lambda} \hat{O}_{\lambda}^{\dagger}\left|\Psi_{\lambda}\right\rangle$
Collective excitation $=$ coherent superposition of 2qp excitations:

$$
\hat{O}_{\lambda}^{\dagger}=\sum_{\alpha \beta} X_{\alpha \beta}^{\lambda} \hat{a}_{\alpha, \nu}^{\dagger} \hat{a}_{\beta, \pi}^{\dagger}-Y_{\alpha \beta}^{\lambda} \hat{a}_{\bar{\beta}, \pi} \hat{a}_{\bar{\alpha}, \nu}
$$

residual interactions derived self-consistently :

$$
v_{\mathrm{res}}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\frac{\delta^{2} \mathcal{E}}{\delta \rho_{1 t_{3}}\left(\boldsymbol{r}_{1}\right) \delta \rho_{1 t_{3}}\left(\boldsymbol{r}_{2}\right)} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}+\frac{\delta^{2} \mathcal{E}}{\delta s_{1 t_{3}}\left(\boldsymbol{r}_{1}\right) \delta s_{1 t_{3}}\left(\boldsymbol{r}_{2}\right)} \sigma_{1} \cdot \boldsymbol{\sigma}_{2} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}
$$

GT giant resonance

$$
\hat{F}_{K}^{t_{3}}=\sum_{\sigma, \sigma^{\prime}} \sum_{\tau, \tau^{\prime}} \int d \boldsymbol{r} \hat{\psi}^{\dagger}(\boldsymbol{r} \sigma \tau)\langle\sigma| \boldsymbol{\sigma}_{K}\left|\sigma^{\prime}\right\rangle\langle\tau| \boldsymbol{\tau}_{t_{3}}\left|\tau^{\prime}\right\rangle \hat{\psi}\left(\boldsymbol{r} \sigma^{\prime} \tau^{\prime}\right)
$$

$\sqrt{ }$ sudden onset of deformation at $\mathrm{N}=60$

SLy4: A. Blazkiewicz et al., PRC71(2005)054321
$\sqrt{ }$ fragmentation of strength distribution due to deformation
separable pnRPA:
P. Urkedal et al., PRC64(2001)054304
$\sqrt{ } \mathrm{SkM}^{*}$ and SLy4 give almost the same excitation energies of GTGR

$$
\mathrm{go}^{\circ}=0.94\left(\mathrm{SkM}^{*}\right), 0.90(\mathrm{SLy} 4)
$$

excitation energy w.r.t. the g.s of daughter
MeV smearing width

GTGR: the need of self-consistency

$\sqrt{ }$ a repulsive character of the residual interaction raises the peak energy
$\sqrt{ }$ the low-lying strengths are absorbed to the high-energy peak strong collectivity of the GTGR
$\sqrt{ }$ the collectivity generated by the Landau-Migdal approximation is weak

$$
v_{\mathrm{ph}}\left(\boldsymbol{r}_{1} \boldsymbol{r}_{2}\right)=N_{0}^{-1}\left[f_{0}^{\prime} \tau_{1} \cdot \tau_{2}+g_{0}^{\prime} \sigma_{1} \cdot \sigma_{2} \tau_{1} \cdot \tau_{2}\right] \delta\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right)
$$

LM parameter:
M. Bender et al., PRC65(2002)054322
self-consistency is needed for a quantitative description of the GTGR

$\mathrm{T}=0(\mathrm{~S}=\mathrm{I})$ pairing

$\sqrt{ }$ affects the GT response

if we have (a) $\mathrm{T}=\mathrm{I}$ pairing condensate(s)

due to the coupling between the p-h and p-p excitations
we may see the effect in the low-lying states that are generated by 2qp excitations around the Fermi levels
\checkmark does not affect the gs properties in $N>Z$ nuclei
a form of the interaction or an np-pairing EDF is seldom known

Take the simplest one;

$$
v_{\mathrm{pp}}^{T=0}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\frac{1+P_{\sigma}}{2} \frac{1-P_{\tau}}{2} V_{0} \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)
$$

the pairing strength determined to reproduce the β-decay half-life of ${ }^{100} \mathrm{Zr}$ (7.1 s)

Low-lying GT states

selection rule for GT-

$\left.\left|\left\langle\pi\left[N n_{3} \Lambda\right] \Omega=\Lambda+1 / 2\right| t_{-} \sigma_{+1}\right| \nu\left[N n_{3} \Lambda\right] \Omega=\Lambda-1 / 2\right\rangle \mid=\sqrt{2}$
${ }^{106} Z r$
constructed dominantly by $\pi[413] 7 / 2 \otimes \nu[413] 5 / 2$ particle-like particle-like $\sqrt{ } \mathrm{T}=0$ pairing effective

108, $110 Z r$
$\pi[413] 7 / 2 \otimes \nu[413] 5 / 2$ particle-like hole-like $\checkmark T=0$ pairing ineffective

Beta-decay half-lives

$\sqrt{ }$ Fermi's golden rule
N. B. Gove, M. J. Martin,

At. Data Nucl. Data Tables 10(1971)205
\checkmark Fermi and Gamow-Teller strengths included
$\sqrt{ } \mathrm{SkM}^{*}$ produces longer half-lives primarily due to a small Q-value

Q-value calculated approximately

$$
\begin{aligned}
Q_{\beta^{-}} & =\Delta M_{\mathrm{n}-\mathrm{H}}+B(A, Z+1)-B(A, Z) \\
& \simeq \Delta M_{\mathrm{n}-\mathrm{H}}+\lambda_{\nu}-\lambda_{\pi}-E_{0} \\
E_{0} & =\min \left[E_{\nu}+E_{\pi}\right]
\end{aligned}
$$

cf. J. Engel et al., PRC60(1999)014302

Beta-decay half-lives with $\mathrm{T}=0$ pairing

$\sqrt{ }$ Strength of $\mathrm{T}=0$ pairing determined at $\mathrm{N}=60$

SLy4

$\sqrt{ }$ reproduces well the observed isotopic dependence with $\mathrm{T}=0$ pairing
\checkmark Effect of the $\mathrm{T}=0$ pairing is small beyond N=68

SkM*

$\sqrt{\text { gives a strong deformed gap at } N=64}$

Summary

Fully-selfconsistent deformed pnQRPA is developed in a Skyrme EDF framework

KY, PTEP2013,113D02
Microscopic and quantitative description of spin-isospin excitations in nuclei with arbitrary mass number whichever they are spherical or deformed, located around the stability line or close to the drip line

Deformation effects on spin-isospin responses
Tiny deformation splitting in Gamow-Teller excitation

Effects of T=0 pairing

Low-lying GT states: Sensitive to the location of the Fermi levels
Beta-decay half-lives are shortened due to the attractive nature

