

Reaction Dynamics for Light Dripline Nuclei

Phys. Scr. T152 (2013) 014019

Angela Bonaccorso

INFN Sezione di Pisa

Advances in Radioactive Isotope Science(ARIS2014) Tokyo, Japan, June 1th- 6th, 2014

Angela Bonaccorso (INFN Sezione di Pisa) Reaction Dynamics for Light Dripline Nuclei I

ARIS2014 1 / 25

Entering the world of exotic nuclei: probing the unbound by walking at the drip line.

- Is there a life beyond the dripline?
- How can we discover it without getting lost?
- Extend our understanding of the *residual* nuclear force.
- Check the limits of validity of structure models such as the SHELL MODEL or "ab initio" models.
- Challenges in breakup reaction theory.

Breakup

Transfer to continuum states (inclusive reaction)

Kinematics and phase space ++ Single particle state properties (shell model)

Fragmentation reaction (coincidence)

Let us start with a two neutron halo nucleus like $^{11}\mathrm{Li}$ or $^{14}\mathrm{Be}$

< 一型

• • = • • = •

 $k_2 - k_1 = k_z$ $\epsilon_1 - \epsilon_i = mv^2/2$

Coulomb breakup (inclusive or coincidence)

Proton Coulomb breakup : core recoil + direct term

A consistent formalism for all breakup reaction mechanisms

The core-target movement is treated in a semiclassical way, but neutron-target and/or neutron-core with a full QM method. AB and DM Brink, PRC38, 1776 (1988), PRC43, 299 (1991), PRC44, 1559 (1991).

Early eikonal model: I. Tanihata, Prog. Part. Nucl. Phys. 35, 505 (1995), halo-core decoupling.

Angela Bonaccorso (INFN Sezione di Pisa) Reaction Dynamics for Light Dripline Nuclei f

Transfer to the continuum: from resonances to knockout reactions

First order time dependent perturbation theory amplitude: **

$$A_{fi} = \frac{1}{i\hbar} \int_{-\infty}^{\infty} dt < \phi_f(\mathbf{r}) |V(\mathbf{r})| \phi_i(\mathbf{r} - \mathbf{R}(t)) > e^{-i(\omega t - mvz/\hbar)}$$
(1)

$$\omega = \varepsilon_i - \varepsilon_f + \frac{1}{2}mv^2 \qquad \mathbf{R}(t) = \mathbf{b_c} + vt$$

$$\frac{dP_{-n}(b_c)}{d\varepsilon_f} = \frac{1}{8\pi^3} \frac{m}{\hbar^2 k_f} \frac{1}{2l_i + 1} \Sigma_{m_i} |A_{fi}|^2$$

$$\approx \frac{4\pi}{2k_f^2} \Sigma_{j_f} (2j_f + 1)(|1 - \bar{S}_{j_f}|^2 + 1 - |\bar{S}_{j_f}|^2) \mathcal{F},$$

 $\phi_f \text{ see } (*)$

$$\mathcal{F} = (1 + F_{l_f, l_i, j_f, j_i}) B_{l_f, l_i} \qquad B_{l_f, l_i} = \frac{1}{4\pi} \left[\frac{k_f}{m v_o^2} \right] |C_i|^2 \frac{e^{-2\eta b_c}}{2\eta b_c} M_{l_f l_i} \qquad B_{l_f, l_i} = \frac{1}{4\pi} \left[\frac{k_f}{m v_o^2} \right] |C_i|^2 \frac{e^{-2\eta b_c}}{2\eta b_c} M_{l_f l_i}$$

Final continuum wave functions

(*) Final continuum state:

$$\phi_{l_f}(\mathbf{r}) = C_f k \frac{i}{2} (h_{l_f}^{(+)}(kr) - \bar{S}_{l_f} h_{l_f}^{(-)}(kr)) Y_{l_f, m_f}(\Omega_f),$$

 $\bar{S}_{l_f}(\varepsilon_f)$ is an optical model (n-core in fragmentation reactions, n-target in knockout reactions) S-matrix.

Examples ¹

¹³Be puzzle

¹³Be puzzle or of the "elusive 1/2+ state in Be isotopes

Our level sequence 2s1/2 a_s=-0.8fm 1p1/2 1d5/2

Figure : (a) GSI, H. Simon et al. NPA791 (2007) 267.

(b) G. Randisi, N. Orr et al. Phys. Rev. C 89, 034320

Energies and widths of unbound p- and d-states in ¹³Be and corresponding strength parameters for the δV potential

	$\varepsilon_{\rm res}~({\rm MeV})$	Γ_j (MeV)	α (MeV)
$1p_{1/2}$	0.67	0.28	8.34
$1d_{5/2}$	2.0	0.40	-2.36

$$(d\delta_l/d\varepsilon)_{res}=2/\Gamma_j$$

G. Blanchon et al. PRC82, 034313 NPA A 784 (2007) 49

Angela Bonaccorso (INFN Sezione di Pisa) Reaction Dynamics for Light Dripline Nuclei

n-⁹Be optical potential: A.B & R.J. Charity, PRC89, 024619 (2014), data from https://www-nds.iaea.org/exfor/exfor.htm

イロン イヨン イヨン イヨン

10 / 25

Transfer to ¹⁰Be resonances: missing mass experiment.

Paper in preparation

Diana Carbone, AB, Mariangela Bondì, F. Cappuzzello, M Cavallaro et al. MAGNEX Collaboration: 1n and 2n transfer experimental campaign

Kinematics

From Eq.1 ** by the change of variables $dtdxdydz \rightarrow dxdydzdz'$ $e^{-i(\omega t - mvz/\hbar)} \rightarrow e^{-ik_1z'}e^{ik_2z}$ neutron energies to neutron parallel momenta with respect to core

$$k_1 = \frac{\varepsilon_f - \varepsilon_i - \frac{1}{2}mv^2}{\hbar v};$$

to target

++**

$$k_2 = \frac{\varepsilon_f - \varepsilon_i + \frac{1}{2}mv^2}{\hbar v};$$

to core parallel momentum

1

$$P_{//} = \sqrt{E_r^2 - M_r^2} = \sqrt{(T_r + M_r)^2 - M_r^2}$$

= $\sqrt{(T_p + \varepsilon_i - \varepsilon_f)^2 + 2M_r(T_p + \varepsilon_i - \varepsilon_f)},$ (2)

breakup threshold at $\varepsilon_f = 0$

Example "deformation" effects due to n-target interaction and kinematical cut-off. F. Flavigny, A. Obertelli, AB et al., PRL 108, 252501 (2012). **

Angela Bonaccorso (INFN Sezione di Pisa) Reaction Dynamics for Light Dripline Nuclei I

ARIS2014 12 / 25

Asymmetries at high incident energy

(日) (周) (三) (三)

Origin of kinematical cut-off (phase space) and deformation effects

PRC60(1999) 054604, PRC44(1991) 1559, AB and GF Bertsch, PRC63(2001) 044604, F. Flavigny, A. Obertelli, AB et al., PRL 108, 252501 (2012). (+)

FIG. 11. Initial-state momentum distributions in ²⁰Ne according to Eq. (2.3a). The solid curve is for the $2s_{1/2}$ state, the dashed curve is the for $1p_{1/2}$, while the dotted curve is for the

Removal of a deeply bound n/p while the weakly bound p/n is un-touched *

ARIS2014 15 / 25

reaction	S _n	S_p	$E_{inc}^{(m)}$	σ^{exp}
	[MeV]	[MeV]	[A.MeV]	[mb]
${}^9C \rightarrow {}^8C$	14.25	1.3	63.8	3.
36 Ca \rightarrow 35 Ca	19.3	1.3	70	5
13 O \rightarrow 12 O	17.01	1.51	28.5	2.5
$^{33}CI \rightarrow ^{32}CI$	15.74	2.3	66.4	9
32 Ar \rightarrow 31 Ar	21.56	2.42	65.1	10.4
$^{28}S \rightarrow ^{27}S$	21.54	2.49	80.7	11.9
24 Si \rightarrow ²³ Si	21.09	3.3	85.3	9.8
${}^{10}C \rightarrow {}^{9}C$	21.28	4.01	116.2	23.4
⁶ Li → ⁵ Li	5.66	4.43	36.6	38.1
14 O \rightarrow 13 O	23 :18	4.63	53	44
34 Ar $\rightarrow ^{33}$ Ar	18.42	4.66	70	3.2
	18.86			4.9
$^7\text{Be} ightarrow ^6\text{Be}$	10.68	5.6	65.2	28.1
⁵⁷ Ni → ⁵⁶ Ni	10.25	7.3	70.2	22.7
	14.0			33.1
	15.04			
32 S \rightarrow 31 S	17.29	8.86	62.8	36
	10.5			
	0 00			61.0
46 Ar \rightarrow 45 Ar	8.56	18.64	70	3.6
	7 53	18 74		67
34c: 33c:	8.54	10.74	73 /	41
JI → JI	11 82		75.4	15
	11.02	19 64		15
10 Be \rightarrow 9 Be	6.81	22.33	77.8	69.5
				1
	1.22	21.08	71.2	100.8
15	7.31		4.00	27.4
¹³ C → ¹⁴ C	8.21		103	6.5
	8.23			5.5
16	4.25			36.5
-°C → ¹³ C	4.99	22.50	15	46

$$\sigma = C^2 S \int_0^\infty d\mathbf{b}_c P_{-n}(b_c) (1 - P_{-p}(b_c)) P_{ct}(b_c)$$
$$e^{-P_{-p}} \approx 1 - P_{-p}(b_c)$$

<u>~</u>

DPP from phase shift, AB, F. Carstoiu, NPA706, (2002) -typically ${\sim}10\%$ reduction in the cross sections.

<ロ> (日) (日) (日) (日) (日)

Angela Bonaccorso (INFN Sezione di Pisa) Reaction Dynamics for Light Dripline Nuclei F

▲ ■ ● ■ ● ○ へ ○ ARIS2014 16 / 25 Absolute cross sections Ratios

$$\sigma = \int d\xi \frac{d\sigma}{d\xi}$$

$$\sigma_{exp}/\sigma_{Theo}$$

have been used to validate spectroscopic factors C²S (=2j+1, in the IPM) for single particle orbitals from shell model or "ab initio" calculations, when available. This is similar to what has traditionally been done for transfer. However in transfer the core-target interaction is treated almost exactly thanks to optical potentials fitted to the elastic scattering.

C. Barbieri PRL103, 202502 (2009)

The reactions for transfer of a nucleon to or from the initial state $|\Psi_0^{0}\rangle$ depend on the overlap wave function [8,9]

$$\psi_{\alpha}^{A\pm1}(\mathbf{r}) = \langle \Psi_{\alpha}^{A\pm1} | \psi^{(\dagger)}(\mathbf{r}) | \Psi_{0}^{A} \rangle, \qquad (1)$$

where α can label either particle or hole states, SFs are identified with the normalization integral of $\psi_{\alpha}^{A\pm1}(\mathbf{r})$ and give a "measure" of what fraction of the final wave function, $|\Psi_{\alpha}^{A\pm1}\rangle$, can be factorized into a (correlated) core plus an independent particle or hole. Strong deviations from the independent particle model (IPM)—that is, a Slater determinant with fully occupied orbits—signal substantial correlations and imply the onset of nontrivial many-body dynamics. For stable nuclei, a large body of

neutron & proton \rightarrow transfer vs breakup F. Flavigny et al., PRL110 ,122503 (2013)

TABLE I. The normalization $C^2 S_{exp}$ for two OFs, phenomenological (WS) and microscopic (SCGF) [30]. For the WS OF, the r_0 values were chosen to reproduce R_{ms}^{HFB} , except for ¹⁶O for which R_{mst} was taken from (e, e'p) data (see text). The SFs $C^2 S_{th}$ are obtained from shell-model calculations with the WBT interaction. In the second part, the analysis was performed with microscopic OFs and SFs. The two errors for $C^2 S_{exp}$ and R_s are the experimental and analysis errors.

Reaction	<i>E</i> * (MeV)	J^{π}	R ^{HFB} (fm)	<i>r</i> ₀ (fm)	$C^2 S_{exp}$ (WS)	$\begin{array}{c} C^2 S_{\mathrm{th}} \\ 0 p + 2 \hbar \omega \end{array}$	R _s (WS)	C ² S _{exp} (SCGF)	$\frac{C^2 S_{\text{th}}}{(\text{SCGF})}$	R _s (SCGF)
$^{14}O(d, t)$ ^{13}O	0.00	3/2-	2.69	1.40	1.69 (17)(20)	3.15	0.54(5)(6)	1.89(19)(22)	3.17	0.60(6)(7)
¹⁴ O (d, ³ He) ¹³ N	0.00	$1/2^{-}$	3.03	1.23	1.14(16)(15)	1.55	0.73(10)(10)	1.58(22)(2)	1.58	1.00(14)(1)
	3.50	$3/2^{-}$	2.77	1.12	0.94(19)(7)	1.90	0.49(10)(4)	1.00(20)(1)	1.90	0.53(10)(1)
$^{16}O(d, t)$ ^{15}O	0.00	$1/2^{-}$	2.91	1.46	0.91(9)(8)	1.54	0.59(6)(5)	0.96(10)(7)	1.73	0.55(6)(4)
¹⁶ O (<i>d</i> , ³ He) ¹⁵ N [19,20]	0.00	$1/2^{-}$	2.95	1.46	0.93(9)(9)	1.54	0.60(6)(6)	1.25(12)(5)	1.74	0.72(7)(3)
	6.32	$3/2^{-}$	2.80	1.31	1.83(18)(24)	3.07	0.60(6)(8)	2.24(22)(10)	3.45	0.65(6)(3)
¹⁸ O (<i>d</i> , ³ He) ¹⁷ N [21]	0.00	$1/2^{-}$	2.91	1.46	0.92(9)(12)	1.58	0.58(6)(10)			

TABLE I: Summary of one-nucleon knockout results from ¹⁴O at 53 MeV/nucleon. The calculated inclusive cross sections σ_{TC} from the transfer-to-the-continuum approach are shown and compared to the measured (σ_{exp}) cross sections. Theoretical spectroscopic factors C^2S are calculated with the WBT interaction [?]. Reduction factors are indicated and defined as R_f in order to distinguish from the strong absorption radius notation (R_s).

Res.	E	J^{π}	σ_{exp}	C^2S	σ_{sp}	$\sigma_{sp}(no_p)$	σ_{TC}	$\sigma_{TC}(no_p)$	\mathbf{R}_{f}
	(MeV)		(mb)		(mb)	(mb)	(mb)	(mb)	
¹³ N	0.0	$1/2^{-}$	58(4)	1.83	34.18		53		0.91
¹³ O	0.0	$3/2^{-}$	14(1)	3.15	10.94	8.6	34.47	27.1	0.52

Proton unbound nuclei via invariant mass method

Interest: Two-proton radioactivity vs. 2n-halo by isospin symmetry ⁵He, ⁶He, ⁸He, ¹²Be and IMME

⁶Li,⁷Be,⁹C,¹³O studied by knockout of a deeply bound **neutron**:

ARIS2014

19 / 25

R. J. Charity & HiRA collaboration

Beyond the drip line

Structure inputs: Shell model and "ab initio" Variational MonteCarlo

SF_{SM} by Mihai Horoi, private communication.

SF_{VMC} from R. Wiringa website http://www.phy.anl.gov/theory/research/overlap/, ANC_{VMC} from Kenneth M. Nollett and R. B. Wiringa, PRC83, 041001(R) (2011).

2.2.2.2.2.2.2.1										
	S_n MeV	ANC_{WS} fm ^{-1/2}	SF_{SM}	ANC_{VMC} fm ^{-1/2}	SF_{VMC}	S_p MeV	ANC_{WS} fm ^{-1/2}	SF_{SM}	ANC_{VMC} fm ^{-1/2}	SF_{VMC}
	1110 1					1110 1				
$\langle {}^{6}Li {}^{5}Li\rangle$	5.66	2.85	$p_{1/2} \ 0.3301$		$p_{1/2} \ 0.20463$	4.59	2.66			p _{1/2} 0.21363
		2.89	$p_{3/2} 0.3384$		p _{3/2} 0.30566		2.36			p _{3/2} 0.31905
$\langle ^7Be ^6Be \rangle$	10.68			12 1		5.61		$p_{1/2} \ 0.2523$	1.652	$p_{1/2} 0.2423$
		5.72	p _{3/2} 0.5990	3.68(5.55)	$p_{3/2} 0.4389$			$p_{3/2}0.4888$	1.89	p _{3/2} 0.4727
$\langle {}^{9}C {}^{8}C\rangle$	14.25				100000000	1.3	000000	p1/2 0.0154	0.309	p _{1/2} 0.1092
		8.1	p _{3/2} 0.8673	5.99(7.9)	$p_{3/2} = 0.5727$		1.33	p _{3/2} 0.9557	1.13	p _{3/2} 0.9933
$\langle {}^{9}C {}^{8}B_{IAS}\rangle$		C				11.915				p _{3/2} 0.16049
$\langle {}^{9}Li {}^{8}Li_{IAS} \rangle$	14.89	6.3			p _{3/2} 0.15754					
$\langle ^{13}O ^{12}O\rangle$	17					1.5		$p_{1/2} 0.5844$		
			p3/2 0.4990					p3/2 0.0670		

Angela Bonaccorso (INFN Sezione di Pisa) Reaction Dynamics for Light Dripline Nuclei I

(日) (同) (三) (三)

	Einc	σ_{exp}	σ_{-n}	σ_{-p}	$\sigma_{-n_{nop}}$	r _s
	A.MeV	mb	mb	mb	mb	fm
$\langle {}^{6}Li {}^{5}Li angle$	36.6	38.1	44.53	47.41	38.5	1.53
$\langle Be ^{\mathfrak{o}}Be \rangle$	65.2	28.1	34.14	15.22	27.5	1.38
$\langle {}^{9}C {}^{8}C\rangle$	63.8	3.		1.57(-1p _{CB})		1.4
			9.8	19.3 (22.3)	4.48	1.59
$\langle {}^{9}C {}^{8}B_{IAS}\rangle$	64.4	1.24				1.4
$\langle {}^{9}Li {}^{8}Li_{IAS} angle$			1.47			1.4
$\langle ^{13}O ^{12}O angle$	28.5	2.5		2.32(-1p _{CB})		1.5
			3.9	1.9	3.6	

 $(-1p_{CB})$ direct proton Coulomb breakup

<ロ> (日) (日) (日) (日) (日)

Conclusions

- Inclusive breakup reactions are dominated by final state interaction with the target at small incident energy: use as surrogate reaction
- At intermediate incident energy: strong interplay between projectile and target characteristics: "deformed' momentum distributions and cutoff effects. PROTON TARGET? see A. Obertelli and T. Aumann talks
- by the valence particle projectile momentum distribution at high incident energy: information on angular momentum of the initial state and possible dynamical core-target excitations
- Coincidence experiments of breakup particle experiments (using invariant mass method) are more INdependent on incident energy but possible dependence on the initial state: necessity to link with methods discussed above and angular correlation of the decaying particles... : one the most interesting experiment to make...and interpret? Can enlighten different channels and reaction mechanisms.
- IN ADDITION
- Elastic scattering experiments and or total reaction cross section measurements: they can tell us about the typical interaction distances and help fixing the optical potentials.
- In the future more and more strongly bound nuclei will be studied at lower energies at ISOL-type facilities. In Europe: HI-Isolde, SPES, Spiral2, EURISOL (?).

ARIS2014 23 / 25

Some of my co-authors and collaborators in historical order.

- D. M. Brink
- N. Vinh Mau
- G. Blanchon
- F. Carstoiu
- G. F. Bertsch
- Ravinder Kumar
- MAGNEX collaboration at INFN-LNS
- F. Flavigny, A. Obertelli
- R. J. Charity
- G. Salvioni... see his talk at DREB2014 in Darmstadt

Conclusions

Preliminary information can be obtained from Dr. Angela Bonaccorso <u>bonac@df.unipi.it</u> Local Organizing Committee : A. Bonaccorso (chair), G. Casini (co-chair). I. Bombaci, A. Kievsky, L.Marcucci V.Rosso, M.Viviani.

ARIS2014 25 / 25

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A