

Nuclear Structure of the Doubly Magic ¹⁰⁰Sn and its Neighbors

Decay Spectroscopy at EURICA

Roman Gernhäuser, TU-München

introduction isotope production EURICA@RIBF selected results expected results

Motivation

T. Faestermann et al. / Progress in Particle and Nuclear Physics 69 (2013) 85–130 $\pi \mathbf{d}_{5/2}, \mathbf{g}_{7/2}, \mathbf{s}_{1/2}, \mathbf{d}_{3/2}, \mathbf{h}_{11/2}$ $v \mathbf{p}_{1/2}, \mathbf{g}_{9/2}$ $vd_{5/2}, g_{7/2}, s_{1/2}, d_{3/2}, h_{11/2}$ 52 ¹⁰⁶Sb 107Sb 104Sb ⁵Sb 51 Proton drip line ¹⁰¹Sn 102**Sn** ¹⁰³Sn ¹⁰⁴Sn ¹⁰⁵Sn 106**Sn** 1005. 50 100In 102 In ¹⁰³In 105 In ⁹⁹In ¹⁰⁴In 98 49 ln 101Cd 100Cd 102Cd 103Cd 104Cd ⁹⁷Cd 98Cd ⁹⁹Cd 96 48 $\pi \mathbf{p}_{1/2}, \mathbf{g}_{9/2}$ 102Ag ⁹⁶Ag ⁹⁸Ag 100Ag 103Ag ⁹⁵Ag ⁹⁷Ag 101_ 99 47 Ag Ag Aq ⁹³Pd ⁹⁴Pd ⁹⁵Pd ⁹⁷Pd ⁹⁸Pd ⁹⁹Pd 100Pd ¹⁰¹Pd ⁹⁶Pd 46 N=Z 50 51 47 49 52 53 54 55 56

D. Bazin et al., Phys. Rev. Lett. 101, 252501 (2008) **C.B. Hinke et at**., Nature 486, 341–345, (2012) , and many others!

ARIS Conference June 2014 @ Tokyo

N=Z

super allowed Fermi decay super allowed GT decay isobaric analogue states and pn interaction

 $\begin{array}{l} rp-process\\ proton drip line\\ \beta p \ and \ p-decay\\ t_{1/2} \ and \ branching \ ratios \end{array}$

Rising at GSI

Superallowed Gamow–Teller decay of the doubly magic nucleus $^{100}\mathrm{Sn}$ **Ch. Hinke et at**., Nature 486, 341–345, June 2012

2

Experiment Area

courtesy of S. Nishimura

EURICA (EUroball-RIKEN Cluster Array)

G S I

Euroball Cluster detectors Support structure Readout electronics used for GSI-RISING

Installation completed in 2012 Feb.

WAS3ABI for ¹⁰⁰Sn

(Wide-range <u>Active Silicon-Strip Stopper Array for Beta and Ion detection</u>)

3 layers of 1mm DSSSDs In total, 7,200 pixels (40-strips x 60 strips) + 70 SSD strips **10 layers of 1mm SSSDs (7str)** design: TU-München/RIKEN Implantation Decay 10 x 1mm 3 x 1mm **ARIS Conference** courtesy of K. Moschner

		this work345MeV,4 mm4 mm 1(mb)(mb)		345MeV, 8 mm ² (mb)	1Ge 22 m (ml	1GeV, 22 mm ³ (mb)		EPAX 3.01 (mb)					
	100 Sn	~1 ×10 ⁻⁹	7.4 ×10 ⁻¹⁰	1.5 ×10 ⁻⁹	5.8 ×	10-9	5.8	× 10-9			n P	KOC.	
										acond	ary .	Ú,Í	
	Most of nicely of	f the other i calculated b	nuclei are by EPAX!						2		r e 127.60 ∞ 4.2	Te 105 0,810 0,810 0,810 10 10 10 10 10 10 10 10 10 10 10 10 1	Te 106 70 μs α 4.160 Sb 105
									51	121.7 Υ σ 5.2	<200 ns β ² ?	0.44 s β ⁺	1.12 s β ⁺
	Differ	ent energie	es or			50	Sn 118.710 σ 0.61	Sn 99 >200 ns β ⁺ ? βρ?	Sn 100 1.16 s p ⁺ 3.15 y	Sn 101 1.9 s β ⁺ βp 2 - 4.2 γ 352, 1065	Sn 102 3.8 s β ⁺ 3.2, 3.5 γ 320, 94, 69 1063	Sn 103 7.0 s β ⁺ γ 1356, 314 1397, 1078 βp. g. m	Sn 104 20.8 s β ⁺ 2.4 γ 133, 913, 401 1407 m, g
	differe	ent process	inced at	49	In 114,818 σ 197	in 97 26 ms ^{β⁺? _{p?}}	In 98 0.86 s 32 ms	In 99 3.1 s ^{p*} ^{p2}	In 100 5.9 s β ⁺ γ 1004, 795 297 βp 2 - 4	In 101 16 s β ⁺ γ 252, 750, 421 891	In 102 22.1 s β ⁺ 3.5 γ 777, 861 593 βp 1.5 - 3	In 103 34 s 60 s 8 ¹	
	amore	in algor a		••	48 Cd 112.411	Cd 95 73 ms	Cd 96 0.99 s	Cd 97 3.8 s 1.10 s pp 1.5-50 pp 1.5 - y 1290 5.0	Cd 98 9.2 s β ⁺ × 347, 1176	Cd 99 16 s β ⁺ , γ 343, 672 1583 βρ	Cd 100 49.1 s ^{β⁺} ^{γ 937, 140} 583	Cd 101 1.2 m ^{8⁺} 98, 1723 1259, 925	Cd 102 5.5 m ε, β ⁺ γ 481, 1037 505, 415
1) H.	Suzuki et al	. Nucl. Inst. and	Meth. in Physics	βp? Ag 94	β ⁺ Ag 95	Ag 96	107, 61 Ag 97	g, m Ag 98	m Ag 99	g.m Ag 100	m Ag 101		
2) I. C	Celikovic Ph	D thesis, Univers	v814 g ⁺ 505 v814 50.5 v814 50.79 659 2018 69	β ⁺ βp 1.5 - 4.5 γ 1261, 1685 2025	4.40 S 0.9 S β ⁺ + 1415 β ⁺ 684, 325	β ⁺ 7.686, 1295 1256	β ⁺ γ 863, 679 571	10.3 \$ 2.1 m 8 ⁴ 4.2 7 264, 832 h 343, 164 806.	β ⁺ 3.4 β ⁺ 5.4 γ 666, 751 1684 773	5.15 (7.1 m 8 ⁺ 2.7 3.4., 7281, 588 1995, 176 (1174			
3) K.	Straub PhD	thesis , Technise	Pd 93 1 s β ⁺ γ 240, 362, 622 866*	Pd 94 9.0 s β ⁺ 7558, 724, 55 798	Pd 95 14 s β ^t , v1351 777, 382 β0,1,3- 3.7	Pd 96 2.0 m s, ^{β+} 1.5 7 125, 762, 500 1099	Pd 97 3.1 m p ⁺ 3.5 y 265, 475 793	Pd 98 17.7 m ε. β ⁺ 0.7 γ 112. 663 107	Pd 99 21.4 m 9 ⁺ 2.2 7 136, 264 673	Pd 100 3.7 d o 8 ⁺ y 84, 75, 126			

ARIS Conference June 2014 @ Tokyo

98In Fast Component

CDE: M.S. Antony el al., Nuc.Data Tables 66 (1997) S Conference June 2014 Orokyo

98In Daughter Component

E

Table 1. Energies, relative intensities, and coincidence relations for γ -rays following the ${}^{98}Cd \rightarrow {}^{98}Ag$ decay. One I_{γ}^{rel} unit corresponds to 0.0008 per ${}^{98}Cd$ decay

 $^{98}Cd \rightarrow ^{98}Ag$

(keV)	$I_{\gamma}^{\rm rel}$	Coincident lines
60.55(10)	450(20)	XAg, 107, 347, 511, 625, 775, 795, 899, 1098, 1176, 1523
107.28(10)	560(14)	XAg, 61, 347, 511, 625, 775, 795, 899, 1124, 1176
347.18(10)	1000	XAg, 61, 107, 511, 552, 625, 775, 874, 1176, 1346
551.7(3)	43(6)	107, 347, 625
624.9(3)	105(15)	XAg, 61, 107, 347, 511, 552, 899
775.6(4)	60(15)	XAg, 61, 107, 347, 511, 874
794.7(4)	62(12)	60, 107, 347, 511, 899
874.5(5)	43(8)	347
898.5(3)	160(30)	XAg, 61, 107, 511, 625, 795, 1098
098(1)	30	
124(1)	27(9)	
176.1(2)	850(30)	XAg, 61, 107, 347, 511
346(1)	20(3)	
523.0(5)	44(10)	61, 107

A. Płochocki et al. Zeitschrift für Physik A (1992), 342,1, pp 43-51

98In Slow Component

see also: G. Lorusso et al., Phys. Rev. C 86 (2012)

Gamma Efficiency from 98Cd Isomer

ARIS Conference June 20

time after implantation [10ns]

C. Hinke et at., Nature 486, 341–345 (2012)

A small calibration error propagates into a large difference in B_{GT}

Conclusion

M. Lewitowicz^{*1}, R. Gernhäuser^{*3}, R. Krücken^{*4}, S. Nishimura^{*5}, H. Sakurai^{*6}, H. Baba^{*5},
B. Blank^{*7}, A. Blazhev^{*8}, P. Boutachkov^{*9}, F. Brown^{*10}, I. Čeliković,^{*1,*2}, G. de France^{*1}, P.
Doornenbal^{*5}, T. Faestermann^{*3}, Y. Fang^{*11}, N. Goel^{*9}, M. Gorska^{*9}, S. Ilieva^{*12}, T. Isobe^{*5},
A. Jungclaus^{*13}, G. D. Kim^{*14}, Y.-K. Kim^{*14}, I. Kojouharov^{*9}, N. Kurz^{*9}, G. Lorusso^{*5}, D.
Lubos^{*3}, K. Moschner^{*8}, I. Nishizuka^{*15}, J. Park^{*4}, Z. Patel^{*16}, M. Rajabali^{*4}, S. Rice^{*16}, H.
Schaffner^{*9}, L. Sinclair^{*17}, P. A. Söderström^{*5}, K. Steiger^{*3}, T. Sumikama^{*15}, Z. Wang^{*4}, H.

*1 GANIL,

- *2 Institute "Vinča", University of Belgrade
- *3 Technische Universität München
- *4 TRIUMF
- *5 RIKEN Nishina Center
- *6 University of Tokyo
- *7 CENBG
- *8 University of Cologne
- *9 GSI Darmstadt

- *10 Brighton University
- *11 Osaka University
- *12 TU Darmstadt
- *13 IEM CSIC, Madrid
- *14 Institute for Basic Science
- *15 Tohoku University
- *16 Surrey University
- *17 York University
- *18 Beihang University
- *19 Peking University

EURICA Collaboration and Support

2012 Nov.-Dec.

2013 May

2012 June

Collaboration:

Tohoku, Univ. Tokyo, Brighton Univ. Debrecen, Joseph Fourier, Osaka Univ. Peking, LPSC, IBS, Oslo, Consejo Sup. De Inv. Cientificas, IPN Orsay, Padova, Leuven, SKKU, INFN, ANU, Köln, TU München, Fisica, Legnaro, ATOMKI, INFN-Milano, INFN-Firenze, INFN-LNL, Univ. di Padova, Surrey, GSI, ANL, Yale, TRIUMF, Milano, Univ. Madrid, Tech. Univ. Darmstadt, Univ. Istanbul, CNS, CEA, RCNP, Univ. Notre Dame, Inst. voor Kern-en Stralings Fysica, Hoseo Univ., Univ. Tsukuba, Inst. Plurid. Hubert Curien, and RIKEN