The AGATA CAMPAIGN at LNL

Daniele Mengoni
Università and INFN Padova – ITALY
for the AGATA collaboration

ARIS – Advances in Radioactive Isotope Science 2014
1th-6th June 2014, Tokyo - Japan
Advanced Gamma-ray Tracking Array

- **2009 LNL**
 - 5TC
 - PRISMA
 - EFF~6%

- **~2014 GANIL**
 - 15 TC
 - VAMOS
 - EXOGAM
 - EFF~20%

- **2012 GSI**
 - 8TC
 - FRS
 - EFF>10%
The first implementation of AGATA installed at LNL
PRISMA: Tracking Magnetic Spectrometer

- Large acceptance $\Omega = 80$ msr
- $\Delta Z/Z \approx 1/60$ (Measured) IC
- Energy $\Delta A/A \approx 1/190$ (Measured)
- Acceptance $\pm 20\%$
- Max. $B_\rho = 1.2$ T.m.
DIFFERENTIAL RDDS MEASUREMENTS AT LNL

\[^{76}\text{Ge} + ^{238}\text{U} \ 577 \text{ MeV} \]

\[^{72}\text{Zn} (-2p-2n) \]

RDDS measurement \(\theta_G = 55^\circ \)

IKP University Köln
TU Darmstadt
PLUNGER

AGATA-PRISMA

Spectra at 50 kHz/capsule counting rate

\[E' + E_\gamma \]

\[\beta_{bef} \sim 10\% \]

\[\beta_{aft} \sim 8.5\% \]
64Ni @ 460 MeV (TANDEM+ALPI)
238U target of 1.35 mg.cm$^{-2}$ + 4 mg.cm$^{-2}$ Nb Degrader

TKEL gate to reduce side feeding

Inversion of 9/2- and 11/2- in 65Co agrees with the LSSM LNPS interaction results. Due to the 66Ni Quadrupole - f7/2 weak coupling

F. Recchia et al., PRC 85, 064305 (2012), V. Modamio et al., PRC 88, 0443265 (2013)
RESULTS ON 70,72,74Zn

- $^72\text{Zn} \rightarrow Q\text{val gate}$

- 2^+: maximum collectivity at $N=42$
- Good agreement with previous results

- 4^+: disagreement with previous results
- Not reproduced by LSSM

- Lowest $B(4/2)<1$
- $B(4/2) \sim$ seniority:

C.Louchart et al., PRC 87, 054302 (2013)
$^{14}\text{N}(p,\gamma)^{15}\text{O}$ REACTION CROSS SECTION

Captures to different excited states in ^{15}O contribute to the cross-section. The one to the gs in ^{15}O is dominated by the tail of the sub-threshold resonance at -507 keV ($6.79 \text{ MeV state in } ^{15}\text{O}$)

C.Angulo et al., NP A690 (2001) 755, M.Marta et al., PR C78 (2008) 022802(R)

$^{14}\text{N}(p,\gamma)^{15}\text{O}$ is the “bottle neck” possible solution for the “solar composition problem” A.M.Serenelli et al., As.J.Lett. 705 (2009)
LIFETIME MEASUREMENT of 6.79 MeV in 15O

14N(2H,n)15O and 14N(2H,p)15N reactions @ 32 MeV (XTU LNL Tandem)

Direct lifetime measurement with 4 ATCs at backward angles (close to the beam-line)

C. Michelagnoli et al., EPJ WoC, INPC 2013
BINARY PARTNER
SHAPE TRANSITION IN THE OS ISOTOPES

- Shape transition from prolate to oblate deformed nuclei in the Os isotopes
 - 194Os suggested to be prolate
 - 198Os shows oblate character

- Binary Partner Method
 - 82Se(198Pt, 196Os)84Kr @ 426 MeV
 - Detect lighter beam-like recoil in PRISMA
 - Reconstruct Spectrum for 196Os

Diagram:

- AGATA
- Dante Array
- Target 198Pt (2 mg/cm2)
- 82Se Beam @ 426 MeV
- 84Kr
- 83Br
- 198Pt
- 197Ir
- 196Os

Graph: E(4^+)/E(2^-) vs. N for Z=78 Pt, Z=76 Os, Z=74 W
SHAPE TRANSITION IN THE OS ISOTOPES

- Yrast band measured for the first time
- $E(4^+)/E(2^+)$ close to 2.5 (γ-soft nucleus)

P.R. John et al., submitted to PLB

- State of the art symmetry conserving configuration mixing (SCCM) calculations performed (T.R. Rodriguez)
- 196Os is a transitional nucleus
HE REGIME
High-Spin Fusion Evaporation
50Ti on 128Te @ 217 MeV, $I \geq 60\hbar$

Goal: populate 174W at the **highest possible spins** ($\geq 60\hbar$), in order to make the **statistical fluctuation analysis of the ridge-valley structures in the γ-γ matrices**, to estimate the number of low-K and high-K bands and their correlation

V.Vandone et al., PRC 88, 034312 (2013)
The relevant energy window for (γ,n) reactions in the stellar photon bath is located in the vicinity of the PDR.

Inelastic scattering of 17O @ 20 MeV/u on different targets + γ-rays in coincidence

TWO EXPERIMENTS PERFORMED:
- Studied Nuclei: 208Pb, 90Zr
 - R. Nicolini (Università di Milano /INFN)
 - D.Mengoni (Università di Padova/INFN)
- Studied nuclei: 208Pb, 124Sn, 140Ce
 - M. Kmiecik (IFJ PAN Kraków)
 - F. Crespi (Univ. di Milano/INFN)

F.C.L. Crespi et al., PRL accepted
PYGMY in 208Pb

- One group of states with **isoscalar** character, the other with an **isovector** nature.

N. Ryezayeva et al., PRL 89, 27 (2002) – previous NRF Experiment

A. Tamii et al., PRL 107, 062502 (2011)

This experiment

208Pb(γ, γ')

208Pb(p, p$'$)

208Pb(17O, 17O$'$)γ
POLARITAZION
I. COULEX TEST 104,108Pd

II. NON-YRAST OCTUPOLE BAND 220Ra, 222Th (J.F. Smith, D. Mengoni)

III. POSITRONIUM ENTANGLEMENT β^+ source 22Na (P.G. Bizzeti)
Partially-polarized 555.8-keV and 433.9-keV lines in ^{104}Pd and ^{108}Pd [+unpolarized ^{137}Cs source].

\[\hat{\sigma}_C(\theta, \varphi) = \frac{r_0^2}{4} \left(\frac{E_{\gamma}'}{E_{\gamma}} \right)^2 \left[\frac{E_{\gamma}'}{E_{\gamma}} + \frac{E_{\gamma}'}{E_{\gamma}} - \sin^2 \theta \right] (1 + P \cos 2\varphi) \]

GOSIA

\[\frac{dN}{d\varphi} = a_0 + a_2 \cos(2\varphi) \]

Analyzing power: 0.48

P.G. Bizzeti et al., EPJ WoC, INPC 2013
SUMMARY AND CONCLUSIONS

- SUCCESSFUL TWO-YEAR LONG PHYSICS CAMPAIGN: LIGHT/HEAVY MASSES, HIGH SPINS AND LOW-LYING PROPERTIES, ETC.

- PERFORMANCE OF THE AGATA DEMONSTRATOR IS PROMISING, MOSTLY IN COMBINATION WITH SEVERAL ANCILLARY DETECTORS
ACKNOWLEDGMENTS

Jose Javier Valiente Dobon
Francesco Recchia
Daniele Mengoni

for the GALILEO Collaboration
Galileo: The New Installation

- High efficiency and P/T
- High sustainable counting rate
- Holding structure
- LN$_2$ filling system
- Beam line and beam dump
- Detectors tapered and triple
A fast low-noise charge sensitive preamplifier based on the core-type AGATA preamplifier
used for both tapered and triple cluster detectors
80 preamplifiers already available

Digi-opt12: 12-channel 14/16-bit 100/125-MS/s digitizer with optical output for GALILEO/AGATA power consumption < 10 W/board
Prototypes under test

New low-power and low-cost readout and preprocessing PCI-express boards developed for GALILEO and AGATA
Prototypes under test
ANCILLARY DETECTORS

- Light charged particles detectors
- Binary reactions fragment detectors
- Neutron detectors
- Lifetime measurement
- Fast timing detectors
- High-energy γ-ray detectors
- Recoil detectors

EUCLIDES LuSiA TRACE
n-Ring N-Wall NEDA
RFD SPIDER
DANTE MW-PPAC
Cologne Plunger
LaBr₃
HECTOR HECTOR+ PARIS
ABOUT PHYSICS: CALL FOR LoIs ...

- STRUCTURE OF N~Z NUCLEI
- ISOSPIN SYMMETRY
- STUDY OF NEUTRON–RICH NUCLEI
- EXOTIC DECAY OF HIGH–SPIN STATES
- NUCLEAR STRUCTURE CLOSE TO 100SN
- CLUSTER AND HIGHLY DEFORMED STATES IN SD–SHELL NUCLEI
- GIANT RESONANCES AND WARM ROTATIONS
- SYMMETRIES AND SHAPE–PHASE TRANSITIONS IN NUCLEI
- SHAPE COEXISTENCE IN NEUTRON–DEFICIENT NUCLEI
- g – FACTOR MEASUREMENTS
- MEASUREMENT OF ASTROPHYSICAL INTEREST CROSS SECTIONS – SURROGATE NR METHOD

GALILEO 0.0: GASP-TYPE DETs, DIGITAL ELECTRONICS
TADEM XTU – PIAVE – ALPI

2nd workshop @ LNL
26-28 May 2014
(ALMOST) COMPLETE LIST OF EXPERIMENTS

<table>
<thead>
<tr>
<th>Week</th>
<th>Size (MB) 07.12.2011</th>
<th>Size (MB) 06.01.2012</th>
<th>Spokesperson(s)</th>
<th>Copied to Grid</th>
<th>Raw Data Deleted</th>
<th>Experiment</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>2009_wk49</td>
<td>426.180</td>
<td>81.927</td>
<td>test</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Trial of the PRISMA detector to grid</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk06</td>
<td>1,868</td>
<td>1,869</td>
<td>test</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Trial of the PRISMA detector to grid</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk07</td>
<td>1,233.943</td>
<td>26.285</td>
<td>A.Maj,F.Azari, P.Napiorkowski</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk09</td>
<td>109.475</td>
<td>14.014</td>
<td>J.Leske</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk19</td>
<td>885.033</td>
<td>471.344</td>
<td>Zs.Podolyak</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk21</td>
<td>311.444</td>
<td>180.501</td>
<td>R.Nicolini, R.Mengoni</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk24</td>
<td>710.484</td>
<td>710.484</td>
<td>M.Doncel,A.Goergen,E.Sahn</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk26</td>
<td>668.207</td>
<td>149.082</td>
<td>J.J.Valente</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk28</td>
<td>376.044</td>
<td>35.539</td>
<td>V.Vendone</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk29</td>
<td>196.429</td>
<td>67.247</td>
<td>R.Moreno,A.C.Ur</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk29</td>
<td>13.249</td>
<td>13.249</td>
<td>F.Crespi</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk30</td>
<td>2,115.231</td>
<td>466.036</td>
<td>P.G.Bizet</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk30</td>
<td>440.931</td>
<td>60.570</td>
<td></td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk31</td>
<td>4,333.809</td>
<td>4,307.174</td>
<td>J.Leske, R.Mengoni</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk32</td>
<td>1,066.357</td>
<td>869.720</td>
<td>C.Weldon</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk33</td>
<td>3,878.798</td>
<td>729.811</td>
<td>D.Montanan</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk34</td>
<td>310.762</td>
<td>310.759</td>
<td></td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk35</td>
<td>552.456</td>
<td>141.589</td>
<td>A.Giacomelli</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk36</td>
<td>432.839</td>
<td>252.433</td>
<td>R.Chapman,F.Haas</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk37</td>
<td>24.906</td>
<td>24.906</td>
<td>E.Fiorotto</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk38</td>
<td>132.841</td>
<td>132.481</td>
<td>M.Evers</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk39</td>
<td>867.239</td>
<td>244.976</td>
<td>C.A.Ur,E.Merchan,E.Marginean</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk40</td>
<td>6,797.341</td>
<td>270.096</td>
<td>A.Gadea</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk41</td>
<td>597.514</td>
<td>402.214</td>
<td>J.Leske**</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk42</td>
<td>5,342.744</td>
<td>808.477</td>
<td>J.Nyberg</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk43</td>
<td>6,648.720</td>
<td>1,005.145</td>
<td>P.Reiter</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk44</td>
<td>3,567.294</td>
<td>3,511.166</td>
<td></td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk45</td>
<td>3,602.562</td>
<td>363.975</td>
<td>A.Gadea**</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk46</td>
<td>12,495.414</td>
<td>1,976.435</td>
<td>V.Modamo</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk47</td>
<td>5,884.339</td>
<td>996.270</td>
<td>D.Verney,G.Duchêne,G.de Angelis</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk48</td>
<td>2,093.213</td>
<td>1,008.686</td>
<td></td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk49</td>
<td>16,211.369</td>
<td></td>
<td>M.Kmiecik,F.Crespi</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk50</td>
<td>2,437.934</td>
<td></td>
<td></td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk51</td>
<td>11,148.187</td>
<td>2,909.889</td>
<td>P.G.Bizet</td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk52</td>
<td>389.250</td>
<td></td>
<td></td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>2010</td>
<td>2010_wk53</td>
<td>12000000</td>
<td></td>
<td></td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>111,806.935</td>
<td>9,571.161</td>
<td></td>
<td>XX</td>
<td>AGATA+DANTE+PRISMA</td>
<td>Coulomb excitation of the presumably deformed band in 42Ca</td>
</tr>
</tbody>
</table>
Position Resolution from in-beam tests

- $^{30}\text{Si}@70\text{MeV} + ^{12}\text{C}$

Position of first interactions at AGATA nominal distance

$\Delta \theta$ γ ray θ Beam Recoil

Overall position resolution for three detectors and two distances

4 - 4.5 mm for E_γ above 1 MeV ($\sigma = 2$ mm).

P-A Söderström (Uppsala)
F. Recchia (INFN-PD)
NIM A 638 (2011) 96
Performance from Commissioning Run

LSSM
Interaction from
E. Caurier et al.
PRC 75, 054317

(AGATA Collaboration)
SHELL EVOLUTION IN Cu AND Zn ISOTOPES

- Systematic variation of effective single-particle energies due to the tensor interaction

 T. Otsuka et al. PRL 95, 232502 (2005)

 \[\pi p_{5/2} \times 2^+ (^{A-1}\text{Ni}) \quad 7/2 \]
 \[\pi p_{3/2} \times 2^+ (^{A-1}\text{Ni}) \quad 7/2 \]
 \[(\pi f_{7/2})^{-1} \quad 7/2 \]
 \[\pi f_{5/2} \quad 5/2 \]
 \[\pi p_{3/2} \quad 3/2 \]

 LNL

 ISOLDE

 \[71^{\text{Cu}}_{42} \]
 \[73^{\text{Cu}}_{44} \]
 \[75^{\text{Cu}}_{46} \]
 \[77^{\text{Cu}}_{48} \]

 ISOLDE

 COULEX ISOLDE

 Inversion of the f_{5/2} with the p_{3/2} in \(^{75}\text{Cu}\)

- Presence of both single-particle and collective states at low energy

Spokespersons: E. Sahin, M. Doncel, A. Goergen

CHARACTER OF THE $7/2^-$ STATE IN ^{71}Cu

- RDDS measurement: ^{76}Ge (577 MeV) + ^{238}U (1.5 mg/cm2), Degrader Nb 4.17 mg/cm2

- New approach for lifetime: normalization done with the number of ions (PRISMA)

- **LNPS interaction**: shell-model calculations using an enlarged valence space: pf-shell orbitals for protons and f$^{5/2}$, p$_{1/2}$, p$_{3/2}$, g$_{9/2}$ and d$_{5/2}$ orbitals for neutrons.

-\[\pi p_{3/2} \times 2^+ (\text{Ni})_{7/2}^- \text{Ni} \quad \text{1190 keV} \]
-\[(\pi f_{7/2})^{-1} \text{Ni} \quad 7/2^- \text{Ni} \quad 981 \text{ keV} \]

- Complex wavefunctions small changes in $\pi p_{3/2}$ & p$_{1/2}$ occupancies

- $\pi p_{3/2} \quad 3/2^-$

- $^{71}\text{Cu}_{42}$

- Analysis by M. Doncel, E. Sahin, C.Louchart

- LSSM by K. Sieja *et al.*
SHAPE TRANSITIONS IN Os ISOTOPES

Ph. R. John, V. Modamio, Zs. Podolyak, C. Wheldon, W. Korten

Energy Density Functionals – D. Vretenar (Priv. Comm.)

Binding energy map $\beta\gamma$ plane

P. D. Bond Phys. Lett. 130B, 167
Zs. Podolyak et al. PRC79, 31305(R)
C. Wheldon et al. PRC63, 11304
FIRST EVIDENCE OF 196Os

82Se + 198Pt (2mg/cm2) at 426 MeV

BLF: $\beta \sim 10\%$ FWHM: 0.5%
TLF: $\beta \sim 3\%$ FWHM: 1.8%

Analysis by P.R. John
K. Hadyńska-Kłęń et al., (accepted in Acta Phys. Pol B)
Zakopane Conference on Nuclear Physics 2012

Q^2 nuclear shape invariants determined by using the Quadrupole Sum Rules method

$$\langle Q^2 \rangle = \left[\frac{3}{4\pi} Z (\frac{3}{A} r_0^3) \right]^2 \langle \beta^2 \rangle$$