Explosive Events in the Universe and H-Burning

Jordi José

Dept. Física i Enginyeria Nuclear, Univ. Politècnica de Catalunya (UPC), & Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona

Nuclear Astrophysics

Type Ia (or thermonuclear) Supernovae [SN Ia]Classical Nova Outbursts [CN]

X-Ray Bursts [XRBs]: NS

Nuclear Astrophysics

Stellar Mergers and Collisions

Guerrero, García-Berro & Isern, A&A (2004)

I. Type Ia Supernovae

Thermonuclear Supernovae

v ~ 10⁴ km/s, L_{Peak} ~ 10¹⁰ L_{\odot} , E ~ 10⁵¹ erg, M_{ej} = 1.4 M_{\odot} no remnant left

* **homogeneity:** ~70% of all **SN Ia** have similar spectra, light curves and peak absolute magnitudes (Li et al. 2011): **diversity of SNIa progenitors??**

- * main **Fe factories** in the Universe (> SN II)
- * Scenario: not fully understood
 - Single degenerate scenario: **WD** + **'Normal' companion** (H or He accretion)
 - Double degenerate scenario: **WD** + **WD** (He or C-O accretion)

Thermonuclear Supernovae: Nucleosynthesis

Supernovae are crucial for life... But never get too close!

W7 DDT W7+DDT

Nuclear Uncertainties

Reaction	Importance		
	Case A	Case B	Case C
$^{12}C(\alpha,\gamma)^{16}O$	X	Х	Х
${}^{12}C({}^{12}C,\alpha){}^{20}Ne$	X	Х	Х
${}^{12}C({}^{12}C,p){}^{23}Na$	X	X	Х
${}^{16}{\rm O}(n,\gamma){}^{17}{\rm O}$	X		
${}^{16}\mathrm{O}(\alpha,\gamma){}^{20}\mathrm{Ne}$	X		
20 Ne $(n, \gamma)^{21}$ Ne			X
20 Ne $(\alpha, p)^{23}$ Na	X	X	Х
20 Ne $(\alpha, \gamma)^{24}$ Mg	X	X	Х
22 Ne $(p, \gamma)^{23}$ Na	X		Х
22 Ne $(\alpha, n)^{25}$ Mg			Х
23 Na $(n, \gamma)^{24}$ Na			Х
23 Na(α , p) 26 Mg		X	
24 Na $(p, n)^{24}$ Mg			Х
24 Mg(α, γ) 28 Si			Х
25 Mg $(n, \gamma)^{26}$ Mg		X	Х
25 Mg $(p, \gamma)^{26}$ Al			X
26 Mg $(p,n)^{26}$ Al			Х
$^{27}\mathrm{Al}(p,\gamma)^{28}\mathrm{Si}$			Х
$^{27}\mathrm{Al}(\alpha,p)^{30}\mathrm{Si}$	X		Х
$^{28}\mathrm{Si}(\alpha,p)^{31}\mathrm{P}$			Х
30 Si $(p, \gamma)^{31}$ P	X		
30 Si $(\alpha, \gamma)^{34}$ S	X		Х
30 Si $(\alpha, n)^{33}$ S			Х
${}^{32}\mathrm{P}(p,n){}^{32}\mathrm{S}$			Х
34 S(α , p) 37 Cl			X
${}^{36}S(p,n){}^{36}Cl$			Х
42 Ca $(\alpha, \gamma)^{46}$ Ti			X
${}^{45}\mathrm{Sc}(p,\gamma){}^{46}\mathrm{Ti}$		X	
${}^{45}\mathrm{Sc}(p,n){}^{45}\mathrm{Ti}$			Х

Parikh, JJ,	Seitenzahl	&	Röpke,
A&A (2013))		

II. Classical Novae

Novae have been observed in all wavelengths (but detected in γ -rays only at <u>E > 100 MeV</u>)

The Classical Nova ID Card Moderate rise times (<1 - 2 days): 8 – 18 magnitude increase in brigthness $L_{Peak} \sim 10^4 - 10^5 L_{\odot}$ Stellar binary systems: WD + MS (often, K-M dwarfs) Recurrence time: $\sim 10 \text{ yr} (\text{RNe}) -$ 10⁵ yr (CNe) Frequency: $30 \pm 10 \text{ yr}^{-1}$ Observed frequency: ~ 5 yr^{-1} $E \sim 10^{45} \text{ ergs}$ Mass ejected: $10^{-4} - 10^{-5} M_{\odot}$ $(\sim 10^3 \text{ km s}^{-1})$

The Nova Nuclear Symphony

Classical Novae: ~100 relevant isotopes (A<40) & a (few) hundred nuclear reactions ($T_{peak} \sim 100 - 400$ MK)

Novae as **unique stellar explosions** for which the nuclear physics input is (will be) primarily based on <u>experimental</u> <u>information</u> (JJ, Hernanz & Iliadis, Nucl. Phys. A 2006)

JJ (2015), in preparation

Nuclear Uncertainties

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 142:105–137, 2002 September © 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE EFFECTS OF THERMONUCLEAR REACTION-RATE VARIATIONS ON NOVA NUCLEOSYNTHESIS: A SENSITIVITY STUDY

CHRISTIAN ILIADIS AND ART CHAMPAGNE

Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255; and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308; iliadis@unc.edu, aec@tunl.duke.edu

Jordi José

Departament de Física i Enginyeria Nuclear (UPC), Avinguda Víctor Balaguer, s/n, E-08800 Vilanova i la Geltrú, Barcelona, Spain; and Institut d'Estudis Espacials de Catalunya, Edifici Nexus-201, Calle Gran Capitá 2-4, E-08034 Barcelona, Spain; jjose@ieec.fcr.es

SUMNER STARRFIELD Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504; sumner.starrfield@asu.edu

AND

PAUL TUPPER Scientific Computing–Computational Mathematics Program, Stanford University, Stanford, CA 94305; tupper@sccm.stanford.edu Received 2002 January 19; accepted 2002 April 25

 \approx 7350 nuclear reaction network calculations

Main nuclear uncertainties: [$^{18}F(p,\alpha)^{15}O$, $^{25}Al(p,\gamma)^{26}Si$, $^{30}P(p,\gamma)^{31}S$]

PRL 111, 232503 (2013)

J. José

Classical-Nova Contribution to the Milky Way's ²⁶Al Abundance: Exit Channel of the Key ²⁵Al(p, γ)²⁶Si Resonance

M. B. Bennett,^{1,2,*} C. Wrede,^{1,2,3,†} K. A. Chipps,⁴ J. José,⁵ S. N. Liddick,^{6,2} M. Santia,^{1,2} A. Bowe,^{1,2,7}
A. A. Chen,⁸ N. Cooper,⁹ D. Irvine,⁸ E. McNeice,⁸ F. Montes,^{2,10} F. Naqvi,⁹ R. Ortez,^{1,2,3} S. D. Pain,¹¹
J. Pereira,^{2,10} C. Prokop,^{6,2} J. Quaglia,^{12,10,2} S. J. Quinn,^{1,2,10} S. B. Schwartz,^{1,2,13} S. Shanab,^{1,2}
A. Simon,^{2,10} A. Spyrou,^{1,2,10} and E. Thiagalingam⁸

PHYSICAL REVIEW C 88, 048801 (2013)

Spectroscopic factor of the 1⁺, ²⁵Al(p,γ)²⁶Si resonance at $E_x = 5.68$ MeV

A. Parikh* and J. José

Strength of the $E_R = 127 \text{ keV}, {}^{26}\text{Al}(p,\gamma){}^{27}\text{Si}$ resonance

A. Parikh^{1,2,*}, J. José^{1,2}, A. Karakas³, C. Ruiz⁴, K. Wimmer⁵

Phys. Rev. C, submitted

Galactic ²⁶Al related to young progenitors SN II vs. WR stars: → Diehl (2004), Diehl et al. (2006)

But ⁶⁰Fe?

PHYSICAL REVIEW C 89, 015803 (2014)

J.

Underground study of the ${}^{17}O(p,\gamma){}^{18}F$ reaction relevant for explosive hydrogen burning

A. Di Leva,^{1,2,*} D. A. Scott,³ A. Caciolli,^{4,5} A. Formicola,^{6,†} F. Strieder,⁷ M. Aliotta,³ M. Anders,⁸ D. Bemmerer,⁸
C. Broggini,⁴ P. Corvisiero,^{9,10} Z. Elekes,⁸ Zs. Fülöp,¹¹ G. Gervino,¹² A. Guglielmetti,^{13,14} C. Gustavino,¹⁵ Gy. Gyürky,¹¹
G. Imbriani,^{1,2} J. José,¹⁶ M. Junker,⁶ M. Laubenstein,⁶ R. Menegazzo,⁴ E. Napolitani,¹⁷ P. Prati,^{9,10} V. Rigato,⁵ V. Roca,^{1,2}
E. Somorjai,¹¹ C. Salvo,^{6,10} O. Straniero,^{2,18} T. Szücs,¹¹ F. Terrasi,^{2,19} and D. Trezzi^{13,14}

(LUNA Collaboration)

PRL 110, 032502 (2013)

PHYSICAL REVIEW LETTERS

week ending 18 JANUARY 2013

Is γ -Ray Emission from Novae Affected by Interference Effects in the ¹⁸F(p, α)¹⁵O Reaction?

A. M. Laird,^{1,*} A. Parikh,^{2,3} A. St. J. Murphy,⁴ K. Wimmer,^{5,6} A. A. Chen,⁷ C. M. Deibel,^{8,9} T. Faestermann,^{10,11} S. P. Fox,¹ B. R. Fulton,¹ R. Hertenberger,^{11,12} D. Irvine,⁷ J. José,^{2,3} R. Longland,^{2,3} D. J. Mountford,⁴ B. Sambrook,⁷ D. Seiler,^{10,11} and H.-F. Wirth^{11,12}

* γ -ray signature: ¹⁸F decay ($T_{1/2} \sim 110 \text{ min}$) provides a source of gamma-ray emission at 511 keV and below (related to electronpositron annihilation). 511 keV But! **Uncertainties** in the rates 10⁻³ 6 h translate into a factor $\sim 5 - 10$ 10⁻⁴ 12 h flux [photons/cm²/s/keV] uncertainty in the expected fluxes! 1.15 M_o CO 10⁻⁵ 24 h 10⁻⁶ 478 keV 10^{-7} 10^{-8} 48 h 170 keV feature Gómez-Gomar, Hernanz, JJ, & 0.1 1.0 Isern (1998), MNRAS D=1 kpcE[MeV]

I'F.I.LEK

Multidimensional Models

doi:10.1038/nature10520

Kelvin–Helmholtz instabilities as the source of inhomogeneous mixing in nova explosions

Jordi Casanova^{1,2}, Jordi José^{1,2}, Enrique García-Berro^{3,2}, Steven N. Shore⁴ & Alan C. Calder⁵

490 | NATURE | VOL 478 | 27 OCTOBER 2011

Multi-D Hydro Simulations with the FLASH Code

Movie available at: http://www.fen.upc.edu/users/jjose/Downloads.html

Kelvin-Helmholtz instabilities

III. Type I X-Ray Bursts

Nucleosynthesis in Type I X-Ray Bursts

Santa Fe, NM

J. José

NS $\longrightarrow T_{peak} > 10^9 \text{ K}, \rho_{max} \sim 10^6 \text{ g.cm}^{-3}$

Detailed nucleosynthesis studies require **hundreds of isotopes**, up to **SnSbTe** mass region (Schatz et al. 2001) or beyond (the flow in Koike et al. 2004 reaches ¹²⁶Xe), and thousands of nuclear interactions

Main nuclear reaction flow driven by the *rp-process* (rapid p-captures and β^+ -decays), the 3 α -reaction, and the α p-process (a sequence of (α,p) and (p,γ) reactions), and proceeds away from the valley of stability, merging with the proton drip-line beyond **A** = **38** (Schatz et al. 1999)

Type I XRB: JJ, Moreno, Parikh & Iliadis (2010), ApJS

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 178:110–136, 2008 September

© 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE EFFECTS OF VARIATIONS IN NUCLEAR PROCESSES ON TYPE I X-RAY BURST NUCLEOSYNTHESIS

Anuj Parikh¹

Departament de Física i Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, E-08036 Barcelona, Spain; xrayburst@gmail.com

Jordi José

Departament de Física i Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, E-08036 Barcelona; and Institut d'Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain; jordi.jose@upc.edu

Fermín Moreno

Departament de Física i Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, E-08036 Barcelona, Spain; moreno@ieec.fcr.es

AND

CHRISTIAN ILIADIS Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255; and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308; iliadis@unc.edu

~ **50,000** post-processing calculations [21 CPU months!] **606** isotopes (¹H to ¹¹³Xe) and **3551** nuclear processes

Reaction Models Affected ==		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reaction $D(\alpha, \gamma)^{19} Ne^a$ $Ne(\alpha, p)^{21} Na^a$ $Mg(\alpha, p)^{25} Al$ $Mg(\alpha, p)^{27} Al^a$ $Mg(\alpha, p)^{27} Al^a$ $Mg(\alpha, p)^{27} Sl^a$ $Al(p, \gamma)^{27} Sl^a$ $Al(p, \gamma)^{27} Sl^a$ $Si(\alpha, p)^{31} P^a$ $Si(\alpha, p)^{33} Cl$ $Si(\alpha, p)^{35} Cl$ $Si(\alpha, p)^{35} Cl$ $Cl(p, \gamma)^{36} Ar^a$ $Si(\alpha, p)^{59} Cu$ $Cu(p, \gamma)^{60} Zn$ $Sa(p, \gamma)^{66} Se$ $Sn(\rho, \gamma)^{70} Kr$ $Sn(\rho, p)^{106} Sb$	Models Affected K04, K04-B1, K04-B6 F08 K04-B1 K04-B2 F08 K04-B4 K04-B4, K04-B5 K04-B3 K04-B2 S01 S01 K04, K04-B2, K04-B3 S01 K04-B7 S01

Thank you for your attention!

111111

Explosive Events in the Universe and H-Burning ^{2nd} Conference on Advances in Radioactive Isotope Science (ARIS2014) Tokyo (Japan), June 4, 2014