

STRUCTURE of NUCLEI from LATTICE SIMULATIONS

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 • O < < < < > > > • •

CONTENTS

- Intro: Ab initio calculation of atomic nuclei
- Light nuclei and the spectrum of ¹²C
- Structure and spectrum of ¹⁶O
- Towards medium-mass nuclei
- Taming the sign problem: Simulations of ¹⁰Be and ¹⁰C
- The fate of carbon-based life as a function of fundamental parameters
- Outlook

Ab initio calculations of atomic nuclei

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 · O < < < < > > > >

INGREDIENTS

- Nuclear binding is shallow: $E/A \leq 8 \text{ MeV}$
- \Rightarrow Nuclei can be calculated from the A-body Schrödinger equation: $|H\Psi_A = E\Psi_A|$
- Forces are of (dominant) two- and (subdominant) three-body nature:

$$\Rightarrow$$
 can be calculated systematically and to high-precision \rightarrow slide
Weinberg, van Kolck, Epelbaum, UGM, Entem, Machleidt, ...

- \Rightarrow fit all parameters in $V_{NN} + V_{NNN}$ from 2- and 3-body data
- \Rightarrow exact calc's of systems with $A \leq 4$ using Faddeev-Yakubowsky machinery

But how about *ab initio* calculations for systems with A > 5?

 $V = V_{\rm NN} + V_{\rm NNN}$

FEW-NUCLEON SYSTEMS from CHIRAL EFT

• np scattering

dσ/dΩ [mb/sr]

• nd scattering

• pol. transfer in pd scattering

Epelbaum, Hammer, UGM, Rev. Mod. Phys. **81** (2009) 1773

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 \cdot O \triangleleft C \wedge ∇ > D \bullet

NUCLEAR LATTICE SIMULATIONS

Frank, Brockmann (1992), Koonin, Müller, Seki, van Kolck (2000), Lee, Borasoy, Schäfer, Phys.Rev. **C70** (2004) 014007, . . . Borasoy, Krebs, Lee, UGM, Nucl. Phys. **A768** (2006) 179; Borasoy, Epelbaum, Krebs, Lee, UGM, Eur. Phys. J. **A31** (2007) 105

- new method to tackle the nuclear many-body problem
- discretize space-time $V = L_s \times L_s \times L_s \times L_t$: nucleons are point-like fields on the sites
- discretized chiral potential w/ pion exchanges and contact interactions + Coulomb + I-violation
- typical lattice parameters

$$\Lambda = rac{\pi}{a} \simeq 300 \, {
m MeV} \, [{
m UV} \, {
m cutoff}]$$

• strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry

J. W. Chen, D. Lee and T. Schäfer, Phys. Rev. Lett. 93 (2004) 242302

• hybrid Monte Carlo & transfer matrix (similar to LQCD)

CONFIGURATIONS

- \Rightarrow all *possible* configurations are sampled
- \Rightarrow clustering emerges naturally
- \Rightarrow perform *ab initio* calculations using only V_{NN} and V_{NNN} as input
- \Rightarrow grand challenge: the spectrum of ¹²C \rightarrow projection MC

PROJECTION MONTE CARLO TECHNIQUE

• General wave function:

 $\psi_j(ec{n}) \ , \ \ j=1,\ldots,A$

• States with well-defined momentum:

$$L^{-3/2} \sum_{\vec{m}} \psi_j(\vec{n} + \vec{m}) \exp(i \vec{P} \cdot \vec{m}) , \ j = 1, \dots, A$$

- Insert clusters of nucleons at initial/final states (spread over some time interval)
 → allows for all type of wave functions (shell model, clusters, ...)
 - \rightarrow removes directional bias

shell-model type

$$egin{aligned} \psi_j(ec{n}) &= \exp[-cec{n}^2] \ \psi_j'(ec{n}) &= n_x \exp[-cec{n}^2] \ \psi_j''(ec{n}) &= n_y \exp[-cec{n}^2] \ \psi_j'''(ec{n}) &= n_z \exp[-cec{n}^2] \end{aligned}$$

cluster type

$$egin{aligned} \psi_j(ec{n}) &= \exp[-c(ec{n}-ec{m})^2] \ \psi_j'(ec{n}) &= \exp[-c(ec{n}-ec{m}')^2] \ \psi_j''(ec{n}) &= \exp[-c(ec{n}-ec{m}'')^2] \ \psi_j'''(ec{n}) &= \exp[-c(ec{n}-ec{m}''')^2] \end{aligned}$$

ullet shell-model w.f.s do not have enough 4N correlations $\sim \langle (N^\dagger N)^2
angle$

COMPUTATIONAL EQUIPMENT

- Past = JUGENE (BlueGene/P)
- Present = JUQUEEN (BlueGene/Q)

Light nuclei and the spectrum of ¹²C

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 · O < < < < > > > >

RESULTS

• fix parameters from 2N scattering and two 3N observables [NNLO: 9+2]

E [M	eV]	NLEFT	Exp.
³ He	- ³ H	0.78(5)	0.76
⁴ He		-28.3(6)	-28.3
⁸ Be		-55(2)	-56.5
¹² C		-92(3)	-92.2

• some ground state energies and differences

- promising results [3NFs very important]
- new method to decrease the systematic errors (triangulation)

 \Rightarrow uncertainties reduced by a factor of 10, e.g. $E(^{8}Be) = -56.3(2) \text{ MeV}$

The SPECTRUM of CARBON-12

• After 8 • 10⁶ hrs JUGENE/JUQUEEN (and "some" human work)

SPECTRUM of ¹²C

• Summarizing the results for carbon-12 at NNLO:

	0_1^+	2^+_1	0^+_2	2^+_2
2N	-77 MeV	-74 MeV	-72 MeV	-70 MeV
3N	$-15~{ m MeV}$	$-15~{ m MeV}$	$-13~{ m MeV}$	-13 MeV
2N+3N	-92(3) MeV	-89(3) MeV	-85(3) MeV	-83(3) MeV
				-82.6(1) MeV [1,2]
Exp.	$-92.16~{ extsf{MeV}}$	-87.72 MeV	-84.51 MeV	-82.32(6) MeV [3]
				-81.1(3) MeV [4]
				-82.13(11) MeV [5]

[1] Freer et al., Phys. Rev. C 80 (2009) 041303
[2] Zimmermann et al., Phys. Rev. C 84 (2011) 027304
[3] Hyldegaard et al., Phys. Rev. C 81 (2010) 024303
[4] Itoh et al., Phys. Rev. C 84 (2011) 054308
[5] Zimmermann et al., Phys. Rev. Lett. 110 (2013) 152502

- importance of **consistent** 2N & 3N forces
- good agreement w/ experiment, can be improved [partly done]

EM TRANSITIONS, RADII etc.

- So far only LO results (need algorithmic improvements)
- RMS charge radii

• Q	uad	rupo	le r	non	nents	3
-----	-----	------	------	-----	-------	---

	LO	Exp.
0^+_1	2.2(2) fm	2.47(2) fm
2^+_1	2.2(2) fm	
0^+_2	2.5(2) fm	
2^+_2	2.5(2) fm	

	LO	Exp.
2^+_1	8(1) e fm	6(3) e fm
2^+_2	-13(2) e fm	

• EM transition strength

	LO	Exp.
$B(E2,2^+_1 ightarrow 0^+_1)$	$7(1) e^2 fm^4$	7.6(4) e^2 fm ⁴
$B(E2,2^+_1 ightarrow 0^+_2)$	$1(1) e^2 fm^4$	2.6(4) e ² fm ⁴

- consistent with overbinding at LO
- results of other approaches: FMD Chernyak et al. (2007)
 NCSM Forssen, Roth, Navratil (2011)

Spectrum & structure of ¹⁶O

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 · O < < < < > > > >

STRUCTURE of ¹⁶O

• Mysterious nucleus, despite modern ab initio calcs

Hagen et al. (2010), Roth et al. (2011), Hergert et al. (2013)

- Alpha-cluster models since decades, some exp. evidence Wheeler (1937), Dennison (1954), Robson (1979), ..., Freer et al. (2005)
- Relevant configurations:

Tetrahedron (A)

Square (narrow (B) and wide (C))

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 · O < < < < > > >

DECODING the STRUCTURE of ¹⁶O

Epelbaum, Krebs, Lähde, Lee, UGM, Rupak, Phys. Rev. Lett. **112** (2014) 102501

- measure the 4N density, where each of the nucleons is placed at adjacent points
- $\Rightarrow 0_1^+$ ground state: mostly tetrahedral config
- $\Rightarrow 0_2^+$ excited state: mostly square configs
 - 2_1^+ excited state: rotational excitation of the 0_2^+

RESULTS for ¹⁶O

• Spectrum:

• LO EM properties:

	LO	NNLO(2N)	NNLO(3N)	$4N_{eff}$	Exp.
0^+_1	-147.3(5)	-121.4(5)	-138.8(5)	-131.3(5)	-127.62
0^+_2	-145(2)	-116(2)	-136(2)	-123(2)	-121.57
2^+_1	-145(2)	-116(2)	-136(2)	-123(2)	-120.70

• LO charge radius: $r(0_1^+) = 2.3(1)$ fm Exp. $r(0_1^+) = 2.710(15)$ fm

 \Rightarrow compensate for this by recscaling with appropriate units of $r/r_{
m LO}$

	LO	LO(r-scaled)	Exp.
$Q(2^+_1)$ [e fm 2]	10(2)	15(3)	
$B(E2,2^+_1 ightarrow 0^+_2)$ [e 2 fm 4]	22(4)	46(8)	65(7)
$B(E2,2^+_1 ightarrow 0^+_1)$ [e ² fm ⁴]	3.0(7)	6.2(1.6)	7.4(2)
$M(E0,0^+_2 ightarrow 0^+_2)$ [e fm²]	2.1(7)	3.0(1.4)	3.6(2)

 \Rightarrow gives credit to the interpretation of the 2_1^+ as rotational excitation

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 \cdot O \triangleleft C \wedge ∇ > D \bullet

Towards medium-mass nuclei

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 · O < < < < > > > >

GOING up the ALPHA CHAIN

- \bullet Consider the α ladder 12 C, 16 O, 20 Ne, 24 Mg, 28 Si as $t_{\rm CPU} \sim A^2$
- Improved "multi-state" technique to extract ground state energies
 - \Rightarrow higher A, better accuracy
 - \Rightarrow overbinding at LO beyond A = 12 persists up to NNLO

REMOVING the OVERBINDING

Lähde et al., Phys. Lett. B732 (2014) 110 [arXiv:1311.0477 [nucl-th]]

• Overbinding is due to four α clusters in close proximity

 \Rightarrow remove this by an effective 4N operator [long term: N3LO]

$$egin{split} V^{(4\mathrm{N}_{\mathrm{eff}})} &= D^{(4\mathrm{N}_{\mathrm{eff}})} \sum_{1 \leq (ec{n}_i - ec{n}_j)^2 \leq 2}
ho(ec{n}_1)
ho(ec{n}_2)
ho(ec{n}_3)
ho(ec{n}_4) \ D^{(1)} &= 0 \end{split}$$

• fix the coefficient $D^{(4N_{eff})}$ from the BE of ²⁴Mg

 \Rightarrow excellent description of the ground state energies

А	12	16	20	24	28
Th	-90.3(2)	-131.3(5)	-165.9(9)	-198(2)	-233(3)
Exp	-92.16	-127.62	-160.64	-198.26	-236.54

 \rightarrow ultimately, reduce lattice spacing [interaction more repulsive] & N³LO

GROUND STATE ENERGIES

Taming the sign problem: Simulations of ¹⁰Be & ¹⁰C

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 · O < < \land \bigtriangledown > \triangleright

SYMMETRY-SIGN INTERPOLATION METHOD

Epelbaum, Krebs, Lähde, Lee, UGM, Rupak, in preparation

$$\langle \operatorname{sign} \rangle = \langle \exp(i\theta) \rangle = \langle \frac{\det M(t_o, t_i, \ldots)}{|\det M(t_o, t_i, \ldots)|} \rangle$$

 $M(t_o,t_i,\ldots)$ is the transition matrix

Borasoy et al. (2007)

• Symmetry-sign interpolation method: control the sign oscillations

 $H_d = d \cdot H_{ ext{phys}} + (1-d) \cdot H_{ ext{SU}(4)}$

$$H_{{
m SU}(4)} = rac{1}{2} C_{{
m SU}(4)} \, (N^{\dagger}N)^2$$

 \hookrightarrow for a given d, dial the SU(4) coupling $C_{SU(4)}$ so that the LO value of the g.s. energy for d = 1 is reproduced

SYMMETRY-SIGN INTERPOLATION: RESULTS

• A first test: ¹²C • First results: A = 10

$$E(^{12}C) = -94.68(34) \text{ MeV}$$

at $t = 0.07 \text{ MeV}^{-1}$

$$ightarrow \log \langle {
m sign}
angle \sim - d^2 \, t$$

• tremendous suppression of the sign oscillations

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 \cdot O < \land ∇ > \triangleright \bullet

GROUND STATES of ¹⁰Be and ¹⁰C

• LO energy

• NLO IV energy ¹⁰Be • N

 \rightarrow promising results!

 \rightarrow major step towards halos, drip lines, ...

The fate of carbon-based life as a function of the quark mass

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 \cdot O \triangleleft C \land ∇ > D

FINE-TUNING of FUNDAMENTAL PARAMETERS

Fig. courtesy Dean Lee

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 · O < < < < > > > > • •

FINE-TUNING: MONTE-CARLO ANALYSIS

Epelbaum, Krebs, Lähde, Lee, UGM, PRL 110 (2013) 112502, Eur. Phys. J. A49 (2013) 82

- ullet simulations allow to vary $m_{
 m quark}$ and $lpha_{EM}$
- quark mass dependence \equiv pion mass dependence:

$$\left| M_{\pi^{\pm}}^2 \sim (m_u + m_d) \right|$$

Gell-Mann, Oakes, Renner (1968)

• explicit and implicit pion mass dependences

CORRELATIONS

• vary the quark mass derivatives of $a_{s,t}^{-1}$ within $-1, \ldots, +1$:

• clear correlations: α -particle BE and the energies/energy differences

 \Rightarrow anthropic or non-anthropic scenario depends on whether the ⁴He BE moves!

THE END-OF-THE-WORLD PLOT

• $|\delta(\Delta E_{h+b})| < 100 \text{ keV}$ Schlattl et al. (2004) [phys. value = 379.47(18) keV]

$$ightarrow \left| \left| \left(0.571(14) ar{A}_s + 0.934(11) ar{A}_t - 0.069(6)
ight) rac{\delta m_q}{m_q}
ight| < 0.0015
ight.$$

<u>OUTLOOK</u>

• Algorithmic improvements:

- tame the sign problem $\Rightarrow N \neq Z$ nuclei $(\rightarrow \text{ first steps})$
- improve extraction of em operator insertions
- improve action to minimize rotational symmetry breaking

Methodological improvements:

- study the finite volume dependence of LO and higher order signals
- study the finite a dependence of energies etc.
- work out the forces to NNNLO and implement in MC codes
- improve EoS for neutron matter and pairing gaps
- reaction theory, first steps

Lee, Pine, Rupak, ...

 \Rightarrow exciting times ahead of us

SPARES

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 · O < < < < > > > > • •

PION EXCHANGE CONTRIBUTIONS

ullet Work to NNLO, need quark mass dependence of M_π, F_π, m_N, g_A

 \Rightarrow using lattice + CHPT gives: $K^q_{M_\pi} = 0.494^{+0.009}_{-0.013}, \ K^q_{F_\pi} = 0.048 \pm 0.012$ $K^q_{m_N} = 0.048^{+0.002}_{-0.006}$

• situation for g_A not quite clear

LQCD data show little quark mass dep.

chiral expansion converges slowly

two-loop representation might suffice to make contact with flat LQCD data Bernard, UGM (2006)

- \rightarrow use a simplified two-loop representation
- ightarrow fixes quark mass dep. of $V_{1\pi}+V_{2\pi}$

 $\cdot \circ \triangleleft < \land \triangledown > \triangleright$

QUARK MASS DEP. of the SHORT-DISTANCE TERMS ³⁵

- Consider a typical OBEP with $M=\sigma,
 ho,\omega,\delta,\eta$
- Quark mass dependence of the sigma and rho from unitarized CHPT

Hanhart, Pelaez, Rios (2008)

 ∇

 $\Rightarrow K^q_{M_\sigma} = 0.081 \pm 0.007, \quad K^q_{M_\rho} = 0.058 \pm 0.002$

⇒ couplings appear quark mass independent (requires refinement in the future) • assume a) that $K_{\omega}^q = K_{\rho}^q$ and b) neglect dep. of δ, η

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 · O < < /

Impact on BBN

Berengut, Epelbaum, Flambaum, Hanhart, UGM, Nebreda, Pelaez, Phys. Rev. D **87** (2013) 085018

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 · O < < \land \bigtriangledown > \triangleright

- In BBN, we also need the variation of ³He and ⁴He. All other BEs are kept fixed.
- use the method of BLP:

Bedaque, Luu, Platter, PRC 83 (2011) 045803

$$K^q_{^A\mathrm{He}} = K^q_{a,\ 1\mathrm{S0}} K^{a,\ 1\mathrm{S0}}_{^A\mathrm{He}} + K^q_{\mathrm{deut}} K^{\mathrm{deut}}_{^A\mathrm{He}} \ , \ \ A=3,4$$

with

$$egin{aligned} K^{a,\;180}_{^3\mathrm{He}} &= 0.12 \pm 0.01 \ , \ \ K^{\mathrm{deut}}_{^3\mathrm{He}} &= 1.41 \pm 0.01 \ K^{a,\;180}_{^4\mathrm{He}} &= 0.037 \pm 0.011 \ , \ \ K^{\mathrm{deut}}_{^4\mathrm{He}} &= 0.74 \pm 0.22 \end{aligned}$$

so that

$$\Rightarrow egin{array}{l} K^q_{^3\mathrm{He}} = -0.94 \pm 0.75, \ \ K^q_{^4\mathrm{He}} = -0.55 \pm 0.42 \end{array}$$

• consistent w/ direct nuclear lattice simulation calc:

$$K^q_{^3\mathrm{He}} = -0.YY \pm 0.XX, \ \ K^q_{^4\mathrm{He}} = -0.15 \pm 0.25$$

EKLLM, PRL **110** (2013) 112502

BBN RESPONSE MATRIX

• calculate BBN response matrix of primordial abundances Y_a at fixed baryon-to-photon ratio:

$$rac{\delta \ln Y_a}{\delta \ln m_q} = \sum_{X_i} rac{\partial \ln Y_a}{\partial \ln X_i} \, K^q_{X_i}$$

• use the updated Kawano code

Kawano, FERMILAB-Pub-92/04-A

Х	d	³ He	⁴ He	⁶ Li	⁷ Li
a_s	-0.39	0.17	0.01	-0.38	2.64
$B_{ m deut}$	-2.91	-2.08	0.67	-6.57	9.44
$m{B}_{ ext{trit}}$	-0.27	-2.36	0.01	-0.26	-3.84
$B_{^3\mathrm{He}}$	-2.38	3.85	0.01	-5.72	-8.27
$B_{ m ^4He}$	-0.03	-0.84	0.00	-69.8	-57.4
$B_{\rm ^6Li}$	0.00	0.00	0.00	78.9	0.00
$B_{^7\mathrm{Li}}$	0.03	0.01	0.00	0.02	-25.1
$B_{^7\mathrm{Be}}$	0.00	0.00	0.00	0.00	99.1
au	0.41	0.14	0.72	1.36	0.43

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 \cdot O \triangleleft C \wedge ∇ > D \bullet

LIMITS for the QUARK MASS VARIATION

• Average of [deut/H] and ${}^{4}\text{He}(Y_{p})$:

$$rac{\delta m_q}{m_q} = 0.02 \pm 0.04$$

- in contrast to earlier studies, we provide reliable error estimates (EFT)
- but: BLP find a stronger constraint due to the neutron life time (affects $Y(^{4}\mathrm{He})$)
- re-evaluate this under the model-independent assumption that all quark & lepton masses vary with the Higgs VEV v
- \Rightarrow results are dominated by the ⁴He abundance:

$$\left|rac{\delta v}{v}
ight| = \left|rac{\delta m_q}{m_q}
ight| \leq 0.9\%$$

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 • O < < \land \bigtriangledown > \triangleright •

EARLIER STUDIES of the ANTHROPIC PRINCIPLE

• rate of the 3
$$lpha$$
-process: $r_{3lpha}\sim\Gamma_{\gamma}\,\exp\left(-rac{\Delta E_{h+b}}{kT}
ight)$

$$\Delta E_{h+b} = E^{\star}_{12} - 3E_{lpha} = 379.47(18) \, {
m keV}$$

• how much can ΔE_{h+b} be changed so that there is still enough ¹²C and ¹⁶O?

$$\Rightarrow ig|\Delta E_{h+b}| \lesssim 100 ext{ keV}$$

Oberhummer et al., Science **289** (2000) 88 Csoto et al., Nucl. Phys. A **688** (2001) 560 Schlattl et al., Astrophys. Space Sci. **291** (2004) 27 [Livio et al., Nature **340** (1989) 281]

 ∇

Structure of Nuclei from Lattice Simulations – Ulf-G. Meißner – ARIS 2014, June 2014 · O < <