

Accelerating the Future of Medical Isotope Production

ARIS 2014, Tokyo, Japan

Paul Schaffer | Head, Nuclear Medicine | TRIUMF

Part 1: Direct production of Tc-99m Part 2: Radiotherapeutic Isotopes via ISOL

Takeaway Message:

- Networks of accelerators (cyclotrons) are a viable option for large-scale medical isotope production and distribution
 - Funding for basic physics research leads to tangible societal benefit

TRIUMF

Owned and operated as an independent joint venture between 19 Canadian universities ¹¹C, ¹⁸F,
⁴⁴Sc,
⁵²Mn
⁵⁵Co,
⁶⁸Ga,
⁸⁶Y,
⁸⁹Zr

Also: ⁸²Rb ¹⁰³Pd ¹²³I ²⁰¹TI etc.

RIVMF Part 1: Direct Production of ^{99m}Tc -Background

- Demand (⁹⁹Mo/^{99m}Tc, global): 20 40 million doses/yr
- Prevalence: 85% of all Nuc. Med. scans use ^{99m}Tc
- Frequency: 76,000 scans/day (>1 scan/second)
- Production (of ⁹⁹Mo via ²³⁵U(n,F)):
 - Canada (~40%), Netherlands (~40%), France (~5%), Belgium (~5%), S.
 Africa (~5%), Australia (~5%)
 - Recent work in S. Africa and Australia is creating new dynamics
- Issues:
 - Reactor shutdown(s): widespread shortages, costs escalating/fluctuating
 - Unknown future ⁹⁹Mo production capacity
 - Aging global reactor infrastructure,
 - Expensive new construction,
 - Full-cost-recovery mandates (eliminate gov't subsidies),
 - Enriched uranium non-proliferation efforts,
 - Regulatory and nuclear safety challenges
- Hypothesis: Future production will be from variety of sources (neutron, proton, electron) and market driven

Alternatives for ^{99m}Tc production

• Alternatives are well known

 Neutron 'solution(s)':

 LEU ²³⁵U(n,F)⁹⁹Mo

 ⁹⁸Mo(n,γ)⁹⁹Mo

 Photon 'solution(s)':

 ²³⁸U(γ,F)⁹⁹Mo

 ¹⁰⁰Mo(γ,n)⁹⁹Mo

 Proton 'solution':

 ¹⁰⁰Mo(p,2n)^{99m}Tc

All at various stages of feasibility/concept development

RIUMF

¹⁰⁰Mo(p,2n)^{99m}Tc at the commercial scale

Goals: 1) Formulate policy on ⁹⁹Mo/^{99m}Tc isotope production 2) Demonstrate Feasibility/Concept 3) Translate to Commercial Sector

Direct Production of ^{99m}Tc in 1971

Background (Beaver and Hupf, U Miami):

- ^{99m}Tc via cyclotron:
 - ^{nat}Mo foils 13 x 0.935" x 0.003", 0.0061µA·hr, 22 MeV
 - ¹⁰⁰Mo powder at 21.4, 20.2, and 15.2 MeV,
 - integrated beam: 0.00046, 0.0296, 0.00068 $\mu\text{A}{}^{\text{-}}\text{hr},$ respectively.
- Conclusions:
 - ¹⁰⁰Mo (97.42%) at 22 MeV and 455 μA will produce 15
 Ci/hr of ^{99m}Tc and 500 mCi/hr of ⁹⁹Mo
 - Assuming an operating cost of \$100/hr, cost of ^{99m}Tc production = \$0.015/mCi !!!

RIUMF 1971-2009 Development Focus: Uncertainty in ¹⁰⁰Mo(p,2n)

- No motivation to pursue given avail. of ²³⁵U(n,F)⁹⁹Mo
- Progress limited to data refinement in subsequent years
 - Lagunas-Solar, Challan, Takács, Lebeda, Gagnon...
 - Foils, pressed powders; natural and enriched Mo

 K. Gagnon et al., Nuc. Med. Biol. 2011, 38, 907-916
 Consider also contributions from (p,x) on ¹⁰⁰Mo and ^{9x}Mo, etc. A. Celler, X. Hou, F. Bénard, T. Ruth, Phys. Med. Biol. 2011, 56, 5469

The Calculated Approach: Predicting Products/Yields

A. Celler, X. Hou, F. Bénard, T. Ruth, Phys. Med. Biol. 2011, 56, 5469

Side Reactions: 94-97Mo(p,n)

A. Celler, X. Hou, F. Bénard, T. Ruth, Phys. Med. Biol. 2011, 56, 5469

Side Reactions: ⁹⁴⁻⁹⁷Mo(p,2n)

A. Celler, X. Hou, F. Bénard, T. Ruth, Phys. Med. Biol. 2011, 56, 5469

Target Enrichment: ⁹⁴⁻⁹⁷Mo vs ¹⁰⁰Mo

lsotope		Natural			
	Α	В	С	D	Naturai
⁹² Mo	0.005	0.006	0.09	0.003	14.85
⁹⁴ Mo	0.005	0.0051	0.06	0.003	9.25
⁹⁵ Mo	0.005	0.0076	0.1	0.003	15.92
⁹⁶ Mo	0.005	0.0012	0.11	0.003	16.68
⁹⁷ Mo	0.01	0.0016	0.08	0.003	9.55
⁹⁸ Mo	2.58	0.41	0.55	0.17	24.13
¹⁰⁰ Mo	97.39	99.54	99.01	99.815	9.63

Higher ¹⁰⁰Mo enrichment ≠ higher purity product

Graphical User Interface (GUI) for Yield and Dose Projections

8 CpYD_1											
	atura Dua	luckst Vi	alda C Da								
50	otron Proc	ucts' YI	elas & Dos	ses							
Yield Calculation	Spectru	m Analysis	5 Dosimet	ry Estimat	ion						
Reaction Inputs	Reaction Inform	nation Summa	ary Advan	ced Features—		-1					
Current (uA) : 100	Current: 1.00E+02 Irradiation Time: 3										
Irradiation Time (h) : 3	EOB Time: 1.00E+										
Time after EOB (h) : 0 - 10	Energy: 1.80E+01 Target: 99.01% Md		CVC	lotron P	roducte	' Vielde	8 10505				
Incident Energy (MeV): 18	Products= all Tc		Cyci		ouuces	Tielus	Doses				
Target Information	Besults of Yie	Yield	Calculation	Spect	trum Ana	lysis D	osimetry E	stimation			
Choose Target Display			Isotopo Activiti			Dose Pest	s (mSv)				
Name: 99.01% Mo-100 target	Tc91m	MIBI 👻	- isotope Activitie	-5		- Dose Resul		min To dia	(ana ana (0()))		
Eff Thickness (g(cm2): 0.439572	Tc91g		Load Data fr	om Yield Calcu	ulations	Adrenals	4.0904e+02	4.4671e+02	9.21		
Or	Tc92 7.22	Pesidence	3h after EOB		•	Brain	1.6081e+02	1.7571e+02	9.27		
Exit Energy (MeV) : 10	Tc93m 3.66	Time	Sirunce LOD			Breasts	1.3895e+02	1.5384e+02	10.72		
Calculate Yields for :	Tc93g 1.25		half-life(h) Activity(GBq)	at3h after EOI	GB Wall	5.6516e+02	6.1421e+02	8.68		
O All Products	Tc94g 3.51		Tc91m 0.0	550		LLI Wall	1.4363e+03	1.5404e+03	7.24		
All Technetium	Tc95m 6.19	S-Factor	Tc91 0.0	517		StomWall	3.4971e+02	3.8389e+02	9.77		
	Tc95g 1.54		Tc92 0.0	780	1.9090e-1	ULI Wall	1.9749e+03	2.0887e+03	5.76		
	Tc96m 2.91		Tc93 2.7	500	0.063	Hrt Wall	4.2309e+02	4.5430e+02	7.38		
Output Display	Tc96g 3.58	RUN	Tc94m 0.8	667	0.019	Kidneys	2.6541e+03	2.7903e+03	5.13		
 Activities (GBq) 	Tc9/m 1.30		Tc94 4.8	833	0.229	Liver	5.7843e+02	6.2309e+02	7.72		
	TC97g		Tc95m 1	464	6.1886e-0	Lun	Target sel	lection			
O Number of Nuclei	Tc99m 1.102	All	Tc95	20	0.139	Mus					
	Tc99g	Results	Tc96m 0.8	583	0.025	Panci				and the second	
RUN CLEAR	Tc100 1.732		Tc96 102.7	000	0.037	RedN		larget	t Select	ion	
	Tc101 3.42		Tc97 3 7000e	+10	0.001	Ostec	Target	List	Та	rget Con	nositions
All Results	4		Tc98 3.7000e	+10		Sk		at A		iger com	ip o siciono
			Tc99m	6	78.061	Sple Cr	eate a new targe	et -	Protro	n Atom	Component (%)
			Tc99 1.8396e	+09		Test 97	39% Mo-100 ta	rget	1	42 92	0.090
			Tc100 0.0	043	5.3488e-20	Thyr Na	atural Mo target	, got	2	42 94	0.060
				334	4.6260e-0	UB V 99	.815% Mo-100 t	arget 👻	3	42 95	0.100
						Uter			4	42 96	0.1100
						Totali			5	42 97	0.080
									6	42 98	0.550
			•			1	Save to Tar	get List	7	42 100	99.010
1							Clear Selete	d Target	Sav	e Data	Quit
	Deve	eloped	DY A. C	eller, X	. Ηοι	i et al.		KG-UB	U		

®TRIUMF 99mTc Production via Solid Target Irradiation (GE PETtrace)

- PETtrace target assembly
 - 130 µA, 16 MeV on target for 360 min
 - Saturation yields: 2.8 GBq/µA (75.6 mCi/µA)
 - Demonstrated yields of ~4.7 Ci

TR19 Solid Target System (BCCA)

- TR19 target assembly
- Progress:
 - 240µA, 18 MeV on target (360 min)
 - ~9.4 Ci (370 GBq) ^{99m}Tc
 - Next: 300µA, 18 MeV (360-540 min)
 - Saturation yield: 3.8 GBq/µA (103 mCi/µA)

©TRIUMF 2010-2014: Development and Installation of High-Power Solid Targets, Associated Hardware

WTRIUMF Yield Comparison: Energy, Current Considerations

Technical Summary of Results

- Target manufacture process, risks addressed...so far
- Yields: ~340 GBq (TR19), ~174 GBq (PETtrace)
- Recovery: ~93% as Na^{99m}TcO₄
- Radiopharmaceutical Production:
 - 3 types of kits (Sestamibi, HMPAO, MDP) radiolabeled successfully and passed standard QC (n = 3 each)
- Radiochemical Purity:
 - Small amounts of ⁹³Tc, ^{94m}Tc, ⁹⁴Tc, ⁹⁵Tc, ⁹⁶Tc impurities were observed – full quantitation underway
 - Non-Tc by-products (⁹⁵Nb, ⁹⁹Mo) collected in waste along with ¹⁰⁰Mo; negligible amounts in final product
 - ¹⁰⁰Mo recycled with 85% recovery yield (range 80 92%)
- Clinical Trial work to begin late 2014

See Bénard et al., J. Nucl. Med. 2014, 55, 1017-1022

Results Interpretation (so far)

- Production capacity: energy, time, current
 - Energy intrinsic to machine (16-19 MeV, <22MeV)
 - Time defined by other commitments (3-6 hrs)
 - Current intuitive for production boost (80-300+ µA); requires cyclotron power, target capabilities
- ¹⁰⁰Mo isotopic purity is important
 - ^{95,96,97}Mo content is more important
- ^{99m}Tc specific activity needs regulatory consideration
 - Presence and affect on chemistry, dosimetry
 - Requires regulatory input (USP, EP)

Canada vs. Japan – Substantial ^{99m}Tc Production Capacity Currently in Place

Canada

Population: ~35M (2012) **Annual ^{99m}Tc needs:** 971 TBq With losses: **1900 - 3000 TBq** Cyclotrons: 22+6 (16-24 MeV) **Existing Capacity: 2483 TBq** (**2** x 6hr runs/d, 240d/yr)

Japan Population: ~ 128M (2012) Annual ^{99m}Tc needs: 3552 TBq With losses: 7,100 - 11,100 TBq Cyclotrons: ~60 (>16 MeV) Existing Capacity: ~10,000 TBq (2 x 6hr runs/d, 240d/yr) ²⁰

RTRIUMF

Part 2: Isotope production at ISAC and ARIEL

High mass isotope production by spallation of ²³⁸U:

²¹³Fr implantation for ²⁰⁹At

Theoretical ²⁰⁹At build-up during ²¹³Fr implantation

8.2 hr implantation \rightarrow 3.2 mCi @EOB 5.0 hr implantation \rightarrow 3.0 mCi @EOB

RTRIUMF

Purity of ²⁰⁹At >99% No unexpected inventory No other astatine isotopes

Apparatus for ²¹³Fr/²⁰⁹At collection

²⁰⁹At-SPECT with hotrod phantom

Radionuclide therapy with astatine-labelled peptides

²⁰⁹At/²¹¹At labelling studies and small animal imaging for targeting peptides (somatostatin-receptor ligands)

²⁰⁹At/²¹¹At labelling development in collaboration with Dr. DS Wilbur, UW **Wilbur et al, Bioconjugate Chem. (2007), 18, 1226-1240**

Future Direction: ISAC-ISOL

- ²¹¹Rn/²¹¹At generator
- ²²⁵Ac/²¹³Bi generator

Feasibility/Chemistry in lead up to full target harvest

Future Direction(s): ARIEL

⁶⁸Zn(γ,p)⁶⁷Cu ¹³²Te(γ,p)¹³¹I ¹⁵⁴Sm(γ,n)¹⁵³Sm ¹⁷⁸Hf(γ,p)¹⁷⁷Lu ¹⁸⁷Re(γ,n)¹⁸⁶Re ²²⁶Ra(γ,n)²²⁵Ra → ²²⁵Ac

Acknowledgements – Tc-99m

• The Team:

- Ken Buckley, Vicky Hanemaayer, Brian Hook, Stuart McDiarmid, , Stefan Zeisler, Frank Prato, Chris Leon, Anne Goodbody, Joe McCann, Conny Hoehr, Tom Morley, Julius Klug, Philip Tsao, Milan Vuckovic, Jean Pierre Appiah, Maurice Dodd, Guillaume Amouroux, Wade English, Xinchi Hou, Jesse Tanguay, Jeff Corsault, Ross Harper, Constantinos Economou
- François Bénard, Tom Ruth, Anna Celler, John Valliant, Mike Kovacs
- TRIUMF and BCCA machine shops
- Finances/Admin
 - Niki Chen, Nina Levi, Henry Chen, Jenny Song, Steven Foster, Neil McLean, Jim Hanlon, Ann Fong, Kevin McDuffie, Niki Martin

BC Cancer Agency CARE & RESEARCH An agency of the Provincial Health Services Authority

Natural Resources

anada

Canada

Ressources naturelles

Canada

Acknowledgements – ISOL

Jason Crawford Tom Ruth Hua Yang Jens Lassen Peter Kunz Peter Machule Stefan Zeisler Stephen Chan Linda Graham Lynne Lemessurier David Prevost Grant Sheffer Joe Mildenberger Danka Krsmanovic Roxana Ralea Maxim Kinakin Stephan Blinder Katherine Dinelle Vesna Sossi D. Scott Wilbur Don Hamlin Mike Adam Francois Benard Kuo-Shyan Lin

Lia Merminga Bob Laxdal Colin Mortin

Thank you

Canadian Société Cancer canadienne Society du cancer

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Thank you! Merci

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada TRIUMF: Alberta | British Columbia | Calgary Carleton | Guelph | Manitoba | McMaster Montréal | Northern British Columbia | Queen's Regina | Saint Mary's | Simon Fraser | Toronto Victoria | Winnipeg | York

