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NMR in nuclear physics 

Observable: Larmor frequency (for different nuclei in one host) 

Determined properties:  

 Precise values of electromagnetic moments of ground- and metastable-states of stable 
nuclei and radio-nuclides (magnetic dipole and electric quadrupole moment): 

 When combined with hyperfine structure determination =>      
direct measurement of nuclear spin 
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Derived information: comparison to nuclear models  

 I: determination on the orbits occupied by valence protons and neutrons 

 Q: determination of nuclear deformation 

Electric field 
gradient (in non-
cubic host lattice) 

(static) external 
magnetic field 



NMR in (chemistry and) biology 
Most versatile method to study structure and dynamics of molecules in solution  

Observables: chemical shift (Larmor frequency) and relaxation times in 
different hosts 

Determined properties 

 local electronic environment (i.e. number and type of coordinating groups) 

 

 

 

 

 

 

 

 

Derived information: comparison to quantum-chemical models (e.g DFT)  

 kinetics and dynamics and ligand binding of the metal ions and biomolecules 

 3D structure of proteins and protein-metal complexes  

 

4 

zzNImag VQBgE 
2

1


'0 BB 0B
known 

Depends on environment 

''0 BB 

Same B, different shielding by host 



NMR and role of metal ions in biology 

Common features with NMR in nuclear physics:  

 Probe nuclei of interest are rare and give weak signals 

 

Sensitivity of conventional NMR is very (or even too) low, so it has to be enhanced 
=> ultra-sensitive NMR approaches needed, e.g. beta-detected NMR 
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Role of metal ions in human body depends on adopted coordination 
environment 

Zn(II), Cu(I), Mg(II): among most abundant cations in living organisms; right 
concentration is crucial for correct functioning of cellular processes 

 Mg: active in RNA- and DNA-processing enzymes and ribozymes 

 Cu:  present in many enzymes involved in electron transfer and activation of oxygen 

 Zn: 2nd  most abundant trace element in human body; catalytic and structural role, 
involved in regulation of genetic message transcription and translation 

Challenges:  

 closed electron shells, thus invisible in many methods;  

 in NMR: almost invisible signals due to small abundance, I>1/2, and small sensitivity 
(due to small magnetic moment) 



Beta-(detected) NMR 

Weak interaction doesn’t conserve parity 

 Anisotropic emission of beta particles from decay of 
polarized nuclei 

 NMR resonance: destruction of asymmetry, 
observed as decrease in beta-decay asymmetry 

 

Measured b-decay asymmetry: 
21
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Angular distribution of beta-radiation: 
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Asymmetry factor (-1,1),     
depends on details of beta decay 

Velocity of beta-particle (v/c close to 1) 

PI (0-100%): degree of spin polarization 

Angle between beta-particle 
emission and direction of spin 
polarization 



Conventional versus beta-NMR 

Conventional NMR Beta-NMR 

Polariza-
tion  

• << 1%: Created inside sample: 
(thermal occupation of levels 
in NMR magnetic field) 

• 1%-100%: Created outside sample:    
(e.g. laser excitation) 

Detection  • << 100% detection efficiency: 
Change of magnetization  

• Up to 100% efficiency: 
Anisotropy of beta decay 

Probe 
nuclei 

• Stable or long-lived: 1H, 13C… 
• Need ~1017 in the sample 

• Radioactive;  8Li, 11Be, 31Mg, … 
• 107 per resonance 

Samples  Liquids, solids Solids (until 2012) 

10 orders of magnitude higher sensitivity than conventional NMR 
Dozens of different (radioactive) probe nuclei 



Beta-NMR: spin polarization 
Spin polarization to obtain large population differences: 

 Production mechanism -> versatile, but only at fragmentation facilities, low polarizations 

 Low temperature (subK) -> cannot perform studies on liquids 

 Passage via titled foils -> versatile, but so far low polarizations, work under way 

 Optical pumping -> dependent on laser scheme available, but high polarizations 

 

Techniques available at ISOLDE-CERN: 
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COLLAPS 

VITO (in 
preparation) Tilted-foils  

behind REX-ISOLDE 



Towards beta-NMR in biology: in practice 
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Simple idea: 
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Radioactive beam 
facility  

(e.g. ISOLDE) 

Experimental setup for 
spin polarization 

NMR magnet and 
chamber with 
liquid sample 

Ion 
beam 

Polarized  
beam 

Big challenge: radioactive beams like high vacuum; most liquids – don’t 

10-6 mbar 10-5 – 10-6 mbar 
Water: 1-10 mbar 

Glycerol: 10-2 
mbar 

Ion 
beam 

Polarized  
beam 

Suggested solution:  

Radioactive beam 
facility  

Optical pumping 
(well tested, high 

polarization) 

NMR magnet and 
chamber with 
liquid sample 

Differential 
pumping  



Mg isotopes: good starting points 

Some history: M. Kowalska, talk at ENAM 2004 on: 

 

 

 

 

 

 

 

 

 

 

 

 

First measurement of spins and moments of 29,31Mg - my PhD thesis: 

 G. Neyens, M. Kowalska, D. Yordanov et al., Phys. Rev. Lett. 94, 022501 (2005) 

  M. Kowalska, D. Yordanov et al, Phys. Rev. C 77, 034307 (2008) 
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Experimental setup at the time 
COLLAPS setup for collinear laser spectroscopy 
at ISOLDE 

 

 

 

 

 

 

 

Experimental procedure: 

 Optical pumping: polarization of atomic spins        
with laser light 

 HFS interaction = polarization of nuclear spins 

 Strong magnetic field: electron and nuclear spin          
decoupling 

 Nuclear spin polarization observed in beta-decay       
asymmetry 
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Laser beam 

+ 
+ 

+ + + + + + 

Beta-NMR 

+ + 

Optical pumping Mg+ ions from 
ISOLDE 

+ 

HV 
Magnet pole 

Beta 
detectors 

10-6 mbar 
Magnet pole 

Crystal host lattice 

+ 

Rf coil 

crystals 

RF-coil 
plastic 

scintilators 

magnet poles 



What did we learn? 
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EHFS = -3089(7) MHz 

s- 

|gI(
31Mg)| = 

 1.7671(3) 

HFS 
NMR 

ref

ref

g

A
IgE  )2/1(Measured ground-state HFS and g-factor = 

independent determination of nuclear spin  
(with 25Mg as reference for A and g) 

isotope spin  (N) 

29Mg 3/2 (*) +0.9780(3) 

31Mg 1/2 -0.88355(15) 

33Mg (**) 3/2 −0.7456(5) 

(*) confirms previous assignment from b-decay 
(**) PhD thesis of D. Yordanov, DY et al, Phys. 

Ref. Lett. 99, 212501 (2007) 
 

Doppler tuning voltage (V) 



What does it mean? 
In nuclear physics:  

 first spin and moment measurement for Mg isotopes around the “island of inversion” 

 29Mg properties consistent with N=20 as good magic number 

 31,33Mg: 2 neutrons across N=20 in ground state => inside the island 

 Contribution to the understanding of the “island of inversion” mechanism 

 

Towards biology applications: 

 31Mg is a spin 1/2 nucleus => no additional splitting in NMR: strong and clean signals 

 31Mg is well produced (1e5 ions/s at ISOLDE) and gives high beta-asymmetries => beta-
NMR resonances can be recorded quickly (a few min per scan) 

 29Mg can serve as comparison: spin 3/2 (so quadrupole interaction present), weaker 
asymmetries but stronger production, so comparable time to record resonances 

 Interesting  case: Mg cations play important roles in living organisms 

 

=> 29,31Mg are ideal cases to tests beta-NMR feasibility on liquid samples (towards 
applications in chemistry and biology) 
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First beta-NMR in a liquid sample 

Project: part of PhD thesis of M. Stachura (Copenhagen, supervisor L. Hemmingsen) 

Beta-NMR spectrometer and differential pumping designed by A. Gottberg (CERN, 
Madrid, Copenhagen) 

Optical pumping, beta detection and magnet: laser-spectroscopy setup (M. Kowalska, 
CERN and COLLAPS collaboration) 

 

 

Proof-of-principle experiment (at ISOLDE) 

 Magnesium-31 beam 

 Spin polarization with lasers 

 Liquid host: ionic liquid (EMIM-Ac) 

 No biological hosts yet 

COLLAPS setup + tailor-made chamber 

August 2012 

M. Stachura, L. Hemmingsen et al., Letter of Intent to the INTC, INTC-I-088 (2010) 



Ion beam transmission 
10-2 mbar just in front of liquid drop;  

1-10 mbar in the last 2-3 mm to minimise beam losses 
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Beam below detection limit 
for 1e-1mbar; no tests with 
water possible at this point. 
 
But there are other liquids 
to start with  

M. Stachura 



31Mg HFS in solid and liquid hosts 

Increase in beta-asymmetry amplitude in 
presence of liquid -> indirect proof that the 
ion beam reacts to the liquid 
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(V/50) 

2004-2005, 
MgO host 

2012 

Host: water drop at the tip of the capillary 

Host: empty liquid capillary 



First beta-NMR in a liquid  

 

 

Data interpretation: 

 NMR: observed frequency difference (chemical shift 1300 ppm) much larger than 
known chemical shifts in liquids (ca. 200 ppm), also quantum chemical calculations 
cannot find Mg binding sites producing such a shift 

 2nd NMR resonance comes from metal capillary (Knight shift in metals – ca. 1000 ppm), 
where about 20% of ion beam is lost: artefact, but also internal frequency reference 

 Conventional NMR (at higher Mg concentration): also no 2nd resonance visible in liquid 

Data:  

 Several NMR spectra 
with high frequency 
modulation and 2 
spectra with resonances 
resolved (no resonance 
frequency reference due 
to end of beamtime) 

 

 

 

A. Gottberg, M. Stachura, M. Kowalska, et. al., to be submitted to Angew. Chemie 

B-static = 0.3 T 
B-rf=  0.4 G  
Width = 5 kHz 



Where do we stand? 

Proof-of-principle system for beta-NMR in liquids exists 

First beta-NMR signal in a liquid recorded (but not in presence of a 
biomolecule) 

beta-asymmetry and beta-NMR signals observed up to 0.1 mbar pressure 
(not yet compatible with water)  

No detailed studies yet possible: 

 Influence of rest gas (so far – He) 

 Different liquid hosts and with biomolecules 

 Change of temperature and pH 
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Open questions: 

 Will aqueous hosts be possible? 

 Will radionuclides host to biomolecules within their lifetime? 

 Will small chemical shifts be visible in beta-NMR? 



Where are we going? 
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Towards beta-NMR studies in biological hosts on Mg, Cu, and Zn cations: 

 Better vacuum-liquid interface (stronger differential pumping, beam 
reacceleration, use of foils, other means of polarization?) 

 More efficient optical pumping and less polarization losses 

 Stronger magnetic field  

 

 

 

 

 

 

 

 

More studies – scientific proposals : 

 ISOLDE: Further studies with Mg, Polarization tests with Cu 

 TRIUMF: tests of Mg polarization 

New VITO beamline at ISOLDE (M. Stachura et al): 

 PAC and beta-NMR in different vacuum environments 

 Devoted to material science, chemistry and biology, and nuclear structure 

 



Summary 

NMR is a powerful method in nuclear physics and in biology  

 

Common requirement of high sensitivity calls for methods such as beta-NMR 

 

Recent beta-NMR studies of properties of Mg isotopes was very fruitful for 
nuclear-structure studies 

 

And it is promising for biology, but beta-NMR has never been used in liquid 
(body-like) hosts 

 

Proof-of principle experiment was performed at ISOLDE in 2012: 

 First liquid b-NMR signal was recorded 

 

Many challenges and work ahead but the goal is very motivating 
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Thanks to my collaborators  

and  

thank you for your attention 
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Optical pumping and atomic spin polarization 
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s+ circularly polarized light => mF = +1 

(or -1 for s -) => atomic spin polarization 

I =3/2 
29 + 

Mg 
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fine 
structure 

hyperfine 
structure 
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Mg+: 280nm, UV 



Zn and Cu isotopes 
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Chemical shift range for different metal ions: 

67Zn: 2700 ppm, from 0 to 2700 (calculations) 

113Cd: 650 ppm, from -650 to 0 

199Hg: 3500 ppm, from -3000 to 500 

Zn candidates: (spin in brackets - not yet measured) 
mass  spin t1/2 production (ions/s) 
73 gs  (1/2) 23 s ca 1e6    
77isomer  (1/2) 1 s 3e4  
77 gs  (7/2) 2 s 7e6 
79  (9/2) 1 s 1e6 

Cu candidates: (all spins confirmed or measured at COLLAPS setup) 
mass  spin t1/2 production (ions/s) 
58  1 3.4 s 3e5 
73  3/2 4 s 4e6  
74  2 1.6 s 6e5 
75  5/2 1.2 s 1e5 

Transition: 
4s4p 3PJ=0,2 ->          
4s6s 3S1 and 4s4d 3DJ 
(300-335 nm) 

Transition: 
2S1/2 gs -> 2P3/2  
(324.754 nm) 



Systematic approach 
 

Observables: chemical shifts, coupling constants, relaxation times 

-> Metal coordination number, oxidation state, electronic configuration 
 

Approach: 

Long-term – Studies on other biologically-relevant metal  ions 
 

Reference 
compound 

Simple 
molecules 

Larger, rigid 
molecules 

Molecules of interest 
in suitable liquid 

Prediction and comparison to quantum-chemical calculations 



Metal binding to proteins 
Studied with Perturbed Angular Correlation method 

25 


