In-beam γ-ray spectroscopy with GRETINA at NSCL

Alexandra Gade NSCL and Michigan State University

FRIB construction

Outline

April 23, 2012 – truck from LBNL at NSCL loading dock

- In-beam γ-ray spectroscopy
- GRETINA at NSCL
- Selected science examples

 –Nuclear structure physics (*N=40*)
 –Nuclear astrophysics (proton-rich)
- Summary and outlook

June 2013 – last science run (the 24th experiment)

In-beam γ-ray spectroscopy with fast beams

Nuclear structure

Single-particle properties

- Knockout
- HI-induced pickup
- Light-ion transfer

Collective phenomena

- Excited-state lifetime measurements
- · Coulomb-excitation
- Inelastic proton scattering

Nuclear astrophysics

Level schemes

Coincidence
 spectroscopy

Weak interactions

 B(GT) values from charge-exchange reactions

In-beam γ-ray spectroscopy at ARIS

Needed for all these measurements: Emission angle of the γ -ray to Doppler-reconstruct the transition energies into the rest frame of the projectile

Increased luminosity, determination of the interaction point for improved energy resolution after Doppler reconstruction

MINOS – A. Obertelli (Plenary 8)

High detection efficiency and high beam intensities

SUNFLOWER – N. Aoi (Plenary 9)

High energy resolution after Doppler reconstruction and opportunities at a stable-beam facility

AGATA@LNL – D. Mengoni (Plenary 9)

The different configurations of the GRETINA campaign

"Standard configuration": 4 detectors under forward angles and 3 at 90 degree

Plunger lifetime measurements

All detectors under 90 degree

All detectors in one hemisphere and LH₂ target in

GRETINA at NSCL: beams from Z=4 to Z=92 – A campaign of 24 experiments

7=82

Nuclear Shell Evolution

- *N*=*Z* Mirror Spectroscopy ✓
- Structure in ^{221,223}Rn ✓
- ⁵⁵⁻⁵²Ca neutron knock-out ✓
- Neutron-rich Ti 🗸
- Structure evolution beyond N=28 in Ca and Ar isotopes ✓
- Odd neutron-rich Ni ✓
- ³⁴Si Bubble nucleus? ✓
- Neutron-rich Si 🗸
- GRETINA commissioning \checkmark
- Neutron-rich N=40 nuclei 🗸
- Normal and intruder configurations in the Island of Inversion ✓

Nuclear Astrophysics

- Excitation energies in ⁵⁸Zn \checkmark
- Measurement with the (d,n) transfer reaction
- GT strength distributions in ⁴⁵Sc and ⁴⁶Ti ✓

Collective Phenomena

- Transition matrix elements in ^{70,72}Ni ✓
- Quadrupole collectivity in light Sn \checkmark

N=126

- γ - γ spectroscopy in neutron-rich Mg \checkmark
- Neutron-rich C lifetime measurement \checkmark
- Collectivity at N=Z via RDM lifetime measurements ✓
- B(E2:2→0) in ¹²Be ✓
- T¹⁻⁷⁴Ni excited-state lifetimes ✓
- Inelastic excitations beyond ^{48}Ca \checkmark
- Triple configuration coexistence in ^{44}S \checkmark
- Search for isovector giant monopole resonance

GRETINA science in talks at ARIS 2014

Nuclear chart courtesy of Thomas Duguet

National Science Foundation Michigan State University

GRETINA surrounding the target position of the S800 spectrograph

National Science Foundation Michigan State University

Shell evolution around *N*=40 – nuclear structure towards ⁶⁰Ca

- Effective shell model interaction with the largest model space available predict $f_{5/2}$, $d_{5/2}$, $g_{9/2}$ degenerate essentially no N=40 gap at all
- The 12 CSkP Skyrme functionals by B. A. Brown [PRL 111, 232502 (2013)] give an *N=40* shell gap between 3-4 MeV and this would change the particle-hole content of the wave functions in this region

Nucleus	$vg_{9/2}$	$vd_{5/2}$	0p0h	2p2h	4p4h	6p6h	E _{corr}
⁶⁸ Ni	0.98	0.10	55.5	35.5	8.5	0.5	-9.03
⁶⁶ Fe	3.17	0.46	1	19	72	8	-23.96
⁶⁴ Cr	3.41	0.76	0	9	73	18	-24.83
⁶² Ti	3.17	1.09	1	14	63	22	-19.62
⁶⁰ Ca	2.55	1.52	1	18	59	22	-12.09
S	lonz	i ot a		C 82	0543	01 (2)	010)

Shell evolution around *N*=40 in neutronrich Ti isotopes: ⁹Be(⁶¹V,⁶⁰Ti+γ)X

- The structure of neutron-rich Ti-Ni isotopes is subject to shell evolution largely driven by the monopole parts of the *pn* tensor force
- Excited states are often one of the first benchmarks. Only one excited state was known in ⁵⁸Ti, nothing in ⁶⁰Ti.
- Excited states in ^{58,60}Ti were populated in nucleon removal reactions and will provide first benchmarks towards *N=40* in the Ti isotopes

⁵⁰Ti and ⁴⁸Ca are the last stable titanium and calcium isotope

⁶⁴Ti and ⁵⁸Ca are the last titanium and calcium isotopes known to exist

A. Gade et al., PRL 112, 112503 (2014)

Looks like a doublet, smells like a doublet ...

National Science Foundation Michigan State University A. Gade, R. V. F. Janssens *et al.,* PRL 112, 112503 (2014)

Probing the wave function with direct reactions

PRL 112, 112503 (2014)

rp process reaction flow through ⁵⁶Ni: Importance of excited states in ⁵⁸Zn

Type I X-ray burst – the *rp* process

Michigan State University C.

C. Langer, F. Montes et al., PRL, accepted

Spectroscopy of neutron-deficient ⁵⁸Zn in d(⁵⁷Cu,⁵⁸Zn+γ) at 75 MeV/u

National Science Foundation Michigan State University

C. Langer, F. Montes et al., PRL, accepted

Uncertainty of reaction rate reduced from 4 orders of magnitude to factor of 10

National Science Foundation Michigan State University

C. Langer, F. Montes et al., PRL, accepted

Outlook – The future is bright

- In-beam γ -ray spectroscopy is prospering around the world with great opportunities afforded by advanced arrays, clever targets and powerful accelerators
- GRETINA at NSCL was a great success and the second science campaign at ATLAS/ANL just started
 - -First GRETINA@NSCL science results are out (see publications and talks/posters during this week)
- GRETINA will return to NSCL for a second fast beam campaign in 2015 after the ANL campaign is completed (likely with more detectors!)

National Science Foundation Michigan State University

Partners in crime ...

 ⁵⁸Zn science slides contributed by Chris Langer and Fernando Montes *et al.* (MSU)

Acknowledgement (for setting up and keeping GRETINA going at NSCL):

LBNL: I.Y. Lee, A.O. Macchiavelli, C.M. Campbell, H. Crawford, M. Cromaz, C. Lionberger, A. Wiens

ORNL: D. Radford, J. M. Allmond

NSCL: **D. Weisshaar**, **F. Recchia**, T. Baugher, C. Langer, E. Lunderberg, A. Lemasson, S. Noji, D. Smalley, K. Wimmer, and R. Fox (NSCL DAQ), and D. Bazin, S. Williams (S800), Hiro Iwasaki (Plunger)

GRETINA is funded by the US DOE - Office of Science. Operation of the array at NSCL is supported by the NSF under PHY-1102511 (NSCL) and DOE under Grant DE-AC02-05CH11231 (LBNL)

National Science Foundation Michigan State University