

2 June 2014

Spin-isospin Correlation in Light Neutron Rich Nuclei

H. Sakai¹, H. Sagawa^{1,2}, M. Kobayashi³, S. Shimoura³, T. Suzuki⁴ and K. Yako³ For the SHARAQ Collaboration

¹ RIKEN Nishina Center

² University of Aizu

³ CNS, The University of Tokyo

⁴ Nihon University

Spin-isospin physics: Gamow-Teller responses

Last century

- $\sigma \tau_{\pm}$ induces GT transition
- 1963 GT giant resonance predicted, Ikeda sum rule 3(N-Z) collectivity?
- ~1980 GT giant resonances established
- Strength quenched/missing: 50-60% of 3(N-Z) due to Δh or 2p2h?
- 1997 ~90% of 3(N-Z) found
- Charge-exchange (p,n)/(n,p) reactions on stable target nuclei

Gamow-Teller responses in isospin extreme

This century

• **Unstable** beams \rightarrow extend the horizon of spin-isospin responses

Today's subject

- Gamow-Teller Giant Resonance(GTGR) under isospin extreme condition
 - \rightarrow Large (N-Z)/A asymmetry
 - \rightarrow GTGR in ery neutron rich light nuclei

Spin-isospin correlations in schematic model

• GTGR (IAS) induced by *ph* residual interaction:

 $V_{12} = \boldsymbol{\kappa}_{\sigma\tau} \vec{\boldsymbol{\sigma}}_1 \vec{\boldsymbol{\sigma}}_2 \vec{\boldsymbol{\tau}}_1 \vec{\boldsymbol{\tau}}_2 \quad (\boldsymbol{\kappa}_{\tau} \vec{\boldsymbol{\tau}}_1 \vec{\boldsymbol{\tau}}_2)$

Dispersion relation for the collective state(GTGR)

$$\frac{2(N-Z)(1-f)}{\varepsilon_i - \varepsilon} + \frac{2(N-Z)f}{\varepsilon_i + \Delta_{\ell s} - \varepsilon} = -\frac{1}{\kappa_{\sigma \tau}}$$

• C. Garrde, NPA396(1982)127c.

Nakayama et al.,PLB114(1982)217

$$E_{\rm GT} - E_{\rm IAS} = \Delta_{\ell s} + 2(\kappa_{\rm GT} - \kappa_{\rm F}) \frac{({\rm N} - {\rm Z})}{{\rm A}}$$

Collectivity in (N-Z)/A>0.21:very nuetron rich nuclei

K.Nakayama et al, PLB114(1982)217.

Schematic model for (N-Z)/A>

• Predicted in 1993 by Sagawa-Hamamoto-Ishihara(SHI), PL B303 (1993) 215.

Hartree-Fock + RPA (TDA) calculation

- For large (N-Z)/A $\rightarrow E_{GT} - E_{IAS} < 0$
- ⁸He : $E_{GT} E_{IAS} = -4.3 \text{ MeV}$ (f=0.44)

K.Nakayama et al, PLB114(1982)217.

GTGR in ⁸He & ¹²Be

 ⁸He : neutron skin (+halo) α+4n
 ¹²Be: neutron halo admixture of 2*s*-orbit into 1*p*-shell large deformation (2:1) cluster structure α+α+4n

Experiment

- (p,n) reaction in inverse kinematics
- ⁸He(p,n) by Kobayashi *et al.*,
- ¹²Be(p,n) by Yako *et al.*,

⁸He/¹²Be(p,n) measurements at RIBF

Measurement on ⁸He(p,n)⁸Li @ 200 MeV/u

⁸He(200 MeV/u) beam 2 Mpps
CH₂ and C
Neutrons(TOF) by a half of WINDS
Residual nucleus(⁷Li/⁸Li)

Measurement on ¹²Be(p,n)¹²B @ 200 MeV/u

Results

12Be(p,n) at 200 MeV/u

 $E_{GT} - E_{IAS} = -2.5 \pm 0.5 \text{ MeV}$

 $E_{GT} - E_{IAS} = -1.2 \pm 0.4 \text{ MeV}$

Comparison of $\kappa_{\sigma\tau}$

	Present result ⁸ He and ¹² Be	SHI (PL B303 (1993) 215) HF+TDA	Gaarde (NP A 396 (1983)127c) ²⁰⁸ Pb	Nakayama (PL 114B (1982) 217) ⁹⁰ Zr - ²⁰⁸ Pb
Ακστ (MeV)	22	20	23	19
AK τ (MeV)	28	28	28	28
(N-Z)/A > 0.22			<	0.22

- GTGRs measured for ⁸He ((N-Z)/A =0.5) and ¹²Be (=0.33) by SHARQ Collaboration
- $\Delta E = E(GT) E(IAS)$ deduced
 - > $\Delta E = -2.5 \text{ MeV}(^{8}\text{He})/-1.2 \text{MeV}(^{12}\text{Be})$ ($\Delta E > 0$ for stable nuclei)
 - ➢ Nakayama empirical line: −7.5 MeV(⁸He)/−2.5 MeV (¹²Be)
- Compared to schematic model and to shell model
 - $\succ \quad \mathbf{K}_{\sigma\tau} \sim 22/A \text{ MeV} \quad (\mathbf{K}_{\tau} \sim 28/A \text{ MeV})$
 - 20/A MeV by SHI of 1993 (HF+TDA)
 - 23/A MeV for ²⁰⁸Pb by Gaarde
 - CK(8-16)POT: poor description
 - **SFO(6-16) constructed: reasonable description**
- Highly interesting to measure GTGR/IAS of
 ¹⁴Be ((N-Z)/A=0.43), ²²C ((N-Z)/A=0.46), ²⁴O ((N-Z)/A=0.33) etc.