

Heavy-Ion Double Charge Exchange study via ¹²C(¹⁸O,¹⁸Ne)¹²Be reaction

Motonobu Takaki (CNS, The University of Tokyo)

H. Matsubara², T. Uesaka³, N. Aoi⁴, M. Dozono¹, T. Hashimoto⁴, T. Kawabata⁵,
S. Kawase¹, K. Kisamori¹, Y. Kubota¹, C.S. Lee¹, J. Lee³, Y. Maeda⁶, S. Michimasa¹,
K. Miki⁴, S. Ota¹, M. Sasano³, T. Suzuki⁴, K. Takahisa⁴, T.L. Tang¹, A. Tamii⁴,
H. Tokieda¹, K. Yako¹, R. Yokoyama¹, J. Zenihiro³, and S. Shimoura¹

¹CNS, The University of Tokyo
 ²National Institute of Radiological Science (NIRS)
 ³RIKEN Nishina Center
 ⁴Research Center for Nuclear Physics, Osaka University
 ⁵Department of Physics, Kyoto University
 ⁶Department of Applied Physics, University of Miyazaki

2nd conference on ARIS 2014, June 2nd 2014

Double Charge eXchange (DCX) reaction

Probe for unstable nuclei

• Using stable target with $\Delta T_z = 2$

Powerful tool to investigate IV Double Giant Resonances

• DIAS, DIVDR...

HIDCX with Missing mass method at Intermediate energy

- Heavy-ion
 - Double Spin and/or Isospin flip ($\Delta S=2, \Delta T_z=2$)
- Missing mass method
 - measure All excitation energy region on a same footing
- Intermediate energy (~ 100MeV/u)
 - direct reaction process dominance
 - simple reaction mechanism
 - Δ*L* sensitivity of angular distributions
 - multipole assignment

We performed ¹²C(¹⁸O,¹⁸Ne) reaction experiment in normal kinematics at 80 MeV/nucleon.

(18O,18Ne) reaction

- Ground states of ¹⁸O and ¹⁸Ne are among the same super-multiplet.
 - simple transition process
 - large transition probability

- A primary ¹⁸O beam is employed
 - high intensity (> 10 pnA)

Experiment can be performed at RCNP with GR spectrometer

high quality data with high energy resolution

Setup of the experiment

Successful result

- Bound and unbound states were observed in one-shot measurement.
- First First First First First State and States a section than the g.s.
- Different angular distribution of the 4.5 MeV peak.

Probing of the configuration mixing

The cross section for the two 0⁺ states at forward angle

⇒dominated by double Gamow-Teller transition(ΔL =0, ΔS =2, ΔT =2).

⇒mainly reflect the *p*-shell contribution.

Evaluation of *p*-shell contribution to 0⁺ states of ¹²Be

Assumption: 1. ¹²C g.s. has only p-shell configuration. 2. The transition occurs in the 0hω

relative cross section between $0^+_{g.s.}$ and 0^+_2 $\leftarrow \rightarrow$ ratio of *p*-shell contributions

$$\sigma(0_2^+) / \sigma(0_{\rm g.s.}^+) = 2.4(2)$$

only statistical error

Similar spectroscopic value with earlier works

p-shell contribution in 0				
	0+	0	0+	methods
Meharchant	25	60	2.4±0.5	12
Fortune	32	68	2.1	SM
Barker	31	42	1.4	SM

R. Meharchant et al., PRL 122501, **108** (2012)

H. T. Fortune et al., PRC, 024301, 74 (2006)

F. C. Barker, Journal of Physics G, 2(4), L45 (1976)

Conclusion

Fre 2.2 MeV peak has a larger cross section than the g.s.

• The p1/2 component dominantly contributes to the 0^+_2 state.

The different angular distribution of the 4.5 MeV peak

• The HIDCX reaction can assign multipolarities.

Summary

- HIDCX reactions are unique probe for light unstable nuclei and IV double giant resonances, especially spin-flip excitations.
- The HIDCX ¹²C(¹⁸O,¹⁸Ne) reaction experiment was performed.
 - Three clear peaks were observed at Ex=0.0, 2.2 and 4.5 MeV.
 - Larger cross section for the ¹²Be(0+₂) state reflects the degree of the *p*-shell contribution for the two 0+ states in ¹²Be.
 - The different angular distributions of the cross sections suggest a sensitivity to multipolarities.

This study shows that spectroscopic studies with the HIDCX reaction are a valid and feasible!

Thank you for your attention.

Backup

Test Experiment to prove experimental feasibility

