Lifetime measurements in neutron-rich Xe isotopes - evolution of quadrupole collectivity beyond ¹³²Sn

TECHNISCHE UNIVERSITÄT DARMSTADT

TECHNISCHE UNIVERSITÄT DARMSTADT

The region around ¹³²Sn

Reduced transition probabilities B(E2)**above** Z = 50 **and** N = 82

Modified Grodzins rule:

 $E_{2^{+}}[\text{keV}] \cdot B(E2; 0^{+} \rightarrow 2^{+})[e^{2}b^{2}] = 3.242 \cdot Z^{2} \cdot A^{-\frac{2}{3}}(1.000 - 0.0608(N - \overline{N}))$

S. Raman et al. (2001) and D. Habs et al. (2002)

full symbols: National Nuclear Data Center *www.nndc.bnl.gov* empty symbols: Ke (Δ): T. Behrens, PhD thesis, TU München (2009); C. Henrich, Master thesis, TU Darmstadt (2014) Cd (◯): S. Ilieva et al., PRC69 (2014) 014313; S. Bönig, PhD thesis, TU Darmstadt (2014)

Reduced transition probabilities B(E2)**above** Z = 50 **and** N = 82

- Safe" Coulomb excitation measurement: $\sigma_{CLX} = f(B(\sigma\lambda), Q_{\lambda})$
- Direct lifetime measurement: $\tau \propto 1/B(\sigma\lambda)$
- (Precise) determination of quadrupole moments combining the above results!

full symbols: National Nuclear Data Center *www.nodc.bnl.gov* empty symbols: Ke (Δ): T. Behrens, PhD thesis, TU München (2009); C. Henrich, Master thesis, TU Darmstadt (2014) Cd (◯): S. Ilieva et al., PRC69 (2014) 014313; S. Bönig, PhD thesis, TU Darmstadt (2014)

EXILL-FATIMA setup at ILL

EXILL-FATIMA: EXOGAM@ILL - FAst TIMing Array

- Experimental setup for measuring pico-second lifetimes (2 10 ps)
- 8 Clover detectors (4 HPGe crystals in each)
- 16 LaBr₃(Ce) fast scintillators

Foto from: N. Saed-Samii, Diploma thesis, University of Cologne

EXILL-FATIMA setup at ILL

EXILL-FATIMA: EXOGAM@ILL - FAst TIMing Array

 Prompt γ-ray spectroscopy following neutron-induced fission

- Cold neutron flux: $\Phi = 5 \times 10^7 / \text{cm}^2 \text{s}$
- Targets used:
 - ► ²³⁵U
 - ²⁴¹Pu

Foto from: N. Saed-Samii, Diploma thesis, University of Cologne

The Generalized Centroid Difference Method

Delayed time distribution D(t) is a convolution of the normalised prompt response function of the setup P(t) with an exponential decay:

$$D(t) = n\lambda \int_{-\infty}^{t} P(t'-t_0)e^{-\lambda(t-t')}dt'$$
, with $\lambda = 1/\tau$

The centroid of the delayed spectrum (D) is displaced by the mean lifetime from the centroid of its convoluted prompt response function (P):

$$\tau = C_{stop}^{D} - C_{stop}^{P}$$
 and $\tau = C_{start}^{P} - C_{start}^{D}$

$$\rightarrow 2\tau = |\overline{\Delta C} - \overline{PRD}|$$

where PRD describes the energy dependent timing response $T(E_{\gamma})$ of the detector setup.

J.-M. Régis et al., Nucl. Instr. Meth. Phys. Res. A726 (2013) 191

Mean PRD curve for the 2013 run

- obtained with coincidence data from ¹⁵²Eu calibration source and from the neutron capture reaction ⁴⁸Ti(n,γ)⁴⁹Ti;
- contains all systematic uncertainties of the method.

Lifetime of the first excited state in ¹³⁸Xe

Lifetime of the first excited state in ¹³⁸Xe

Lifetime of the first excited state in ¹⁴⁰Xe

Lifetime of the first excited state in ¹⁴²Xe

Comparison with existing measurements

Isotope	au (ps)	au (ps)	au (ps)
	this work	direct measurement	calculated from $B(E2) \oslash Q(2^+) = 0$
¹³⁸ Xe	17.3	-	16.8(39) ²
¹⁴⁰ Xe	117.3	101.7(32) ¹	90.1(107) ²
¹⁴² Xe	311.2	-	310 (40) ²

¹Lindroth et al., PRL 82(1999)4783

²T. Behrens, PhD thesis, TU München

Combined analysis of Coulomb excitation and lifetime data - determination of quadrupole moments

- ► ¹³⁸Xe
- B(E2; 0⁺₁ → 2⁺₁) = e²b²
 Q^{Sp}₂₊ = eb

► ¹⁴²Xe

TECHNISCHE

UNIVERSITÄT DARMSTADT

C. Henrich, Master Thesis, TU Darmstadt

Summary and Outlook

- Pico-second lifetimes of excited states in neutron-rich xenon isotopes were measured in the EXILL-FATIMA campaign at ILL:
 - isotopes studied: ¹³⁸⁻¹⁴⁴Xe;
 - excited states populated in neutron-induced fission of ²³⁵U and ²⁴¹Pu;
 - analysis via the generalized centroid difference method.
- Combined analysis of the Coulomb excitation measurement at REX-ISOLDE (CERN) and lifetime data allows for (precise) determination of nuclear quadrupole moments of the excited states.
- ► HIE-ISOLDE: Influence of multiple Coulomb excitation increases due to higher beam energy (additional matrix elements - e.g. E3) → knowledge of the lifetimes very useful for the analysis.

The EXILL-FATIMA Collaboration

TU Darmstadt, Germany S. Ilieva, S. Bönig, A.-L. Hartig, C. Henrich, A. Ignatov, Th. Kröll, M. Thürauf Universität zu Köln, Germany

J. Jolie, J.-M. Régis, N. Saed-Samii

ILL, Grenoble, France A. Blanc, M. Jentschel, U. Köster, P. Mutti, T. Soldner, W. Urban

GANIL, France G. de France

IPHC Strasbourg, France

R. Lozeva

University of the West of Scotland, Paisley, UK

M. Scheck, G. Simpson

CSNSM Orsay, France C. Petrache, R. Leguillon, T. Zerrouki, S. Kaim, Ks. Rezynkina

IFIN-HH, Bucharest, Romania N. Mărginean, D. Filipescu, I. Gheorghe, D. Ghita, R. Lica, R. Mărginean, C. Mihai, S. Toma

University of Surrey, Guildford, UK P.H. Regan, R. Carroll, Zs. Podolyák, C. Townsley, P. Walker, W. Catford, T. Alharbi

Universidad Complutense, Madrid, Spain L. M. Fraile, V. Paziy ...

Thank you for your attention!

Supported by:

Helmholtz International Center

Bundesministerium für Bildung und Forschung

06DA9036I, 05P12RDCIA, 05P12RDNUP