Effect of fluctuations of quadrupole deformation and neutron-proton correlations on double-beta decay nuclear matrix element

<u>Nobuo Hinohara</u>* Jon Engel

University of North Carolina at Chapel Hill, USA * University of Tsukuba, Japan (from 6/1/2014)

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Jun.2, 2014

Advances in Radioactive Isotope Science (ARIS2014)

Double-beta decay

- \square single β -decay forbidden
- □ two modes (2v and 0v)
- □ 2v decay measured (half-lives: order of 10^{19~21} yr)

 $(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta},Z)|M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$

- Ov is possible if the neutrino is Majorana particle
- □ 2v measured nuclei: ⁴⁸Ca,⁷⁶Ge,⁸²Se,⁹⁶Zr,¹⁰⁰Mo,¹¹⁶Cd,¹²⁸Te,¹³⁰Ba,¹⁵⁰Nd,²³⁸U

half life of $0v \beta\beta$ decay

effective mass of Majorana neutrino

$$\langle m_{\beta\beta} \rangle \equiv \bigg| \sum_{k} m_{k} U_{ek}^{2} \bigg|$$

Review: Avignone, et al., Rev. Mod. Phys. 80, 481 (2008)

Nuclear Matrix Element

2v and 0v half lives

$$\begin{aligned} (T_{1/2}^{2\nu})^{-1} &= G_{2\nu}(Q_{\beta\beta},Z) |M_{2\nu}|^2 \\ (T_{1/2}^{0\nu})^{-1} &= G_{0\nu}(Q_{\beta\beta},Z) |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2 \end{aligned}$$

nuclear matrix element in closure approximation

$$M_{0\nu} = \frac{2R}{\pi g_A^2} \int_0^\infty q dq \langle f | \sum_{ab} \frac{j_0(qr_{ab})[h_{\rm F}(q) + h_{\rm GT}(q)\vec{\sigma}_a \cdot \vec{\sigma}_b]}{q + \bar{E} - (E_i + E_f)/2} \tau_a^+ \tau_b^+ |i\rangle$$
$$M_{0\nu} \approx M_{0\nu}^{\rm GT} - \frac{g_V^2}{g_A^2} M_{0\nu}^F$$

$$M_{0\nu}^F = \langle f | \sum_{a,b} H(r_{ab}, \bar{E}) \tau_a^+ \tau_b^+ | i \rangle \qquad M_{0\nu}^{GT} = \langle f | \sum_{a,b} H(r_{ab}, \bar{E}) \vec{\sigma}_a \cdot \vec{\sigma}_b \tau_a^+ \tau_b^+ | i \rangle$$

H: neutrino potential

nuclear structure theories for nuclear matrix element

- □ shell model
- **D** proton-neutron QRPA
- **□** generator coordinate method
- IBM

Importance of pn correlations: pnQRPA

Advantages

large single-particle model space
odd-odd intermediate states as one-phonon excitation
pn pairing quenches the matrix element

Limitation

small-amplitude approximation:

not reliable near (and after) the phase transition (isovector \rightarrow isoscalar)

based on a single mean field

cannot handle the large-amplitude fluctuation of the mean field

quadrupole shape fluctuation (⁷⁶Ge)

Engel et al. PRC55,1781(1997)

Going beyond mean field (GCM)

Rodriguez and Martinez-Pinedo, Prog. Part. Nucl. Phys. **66**, 436 (2011) Vaquero et al. Phys. Rev. Lett. **111**, 142501 (2013)

Generator coordinate method: (Gogny D1S)

$$|I_{i/f}^{+\sigma}\rangle = \sum_{\beta_2,\delta} g_{i/f}^{I\sigma}(\beta_2,\delta) |\Psi_{i/f}^{I}(\beta_2,\delta)\rangle$$

$$|\Psi_{i/f}^{I}(\beta_{2},\delta)\rangle = P^{N_{i/f}}P^{Z_{i/f}}P^{I}|\phi(\beta_{2},\delta)\rangle$$

deformation and like-particle pairing -constrained mean fields

mean fields with different deformation and pairing: large-amplitude fluctuation
fluctuation of deformation decreases (and pp and nn pairing increases) matrix element
no neutron-proton residual correlations considered

Goal

to compute the nuclear matrix elements including large-amplitude fluctuations of

- quadrupole deformation
- neutron-proton correlations
- using generator coordinate method (no other pn-GCM calculations ever)

Our approach: GCM with pn degrees of freedom

Generalized HB (3D harmonic oscillator basis)

neutron and proton mixed quasiparticles

$$\hat{a}_{k}^{\dagger} = \sum_{l} \left(U_{lk}^{(n)} \hat{c}_{l}^{(n)\dagger} + V_{lk}^{(n)} \hat{c}_{k}^{(n)} + U_{lk}^{(p)} \hat{c}_{l}^{(p)\dagger} + V_{lk}^{(p)} \hat{c}_{k}^{(p)} \right)$$

Constrained HB: q (generator coordinates): $a_k |\phi(q)\rangle = 0$

axial quadrupole deformation Q₂₀
T=1, S=0 Isovector (np) pairing
T=0, S=1 Isoscalar pairing

← for Fermi Matrix element
← for Gamow-Teller

Projections isoscalar pairing condensation breaks both particle number conservation and rotational symmetry

$$|\phi_{I=0,M=0}^{N,Z}(q)\rangle = \hat{P}^N \hat{P}^Z \hat{P}_{M=0K=0}^{I=0} |\phi(q)\rangle$$

Superposition of projected mean fields (GCM)

$$|\Psi(N, Z, I = 0, M = 0)\rangle = \int dq f_k(q) |\phi_{I=0,M=0}^{N,Z}(q)\rangle$$

$^{76}\text{Ge} \rightarrow ^{76}\text{Se} \beta\beta \text{ decay}$

Hamiltonian

s.p. model space: full pf + sdg shells

parameter:

D s.p.energy, pp and nn pairings, quadrupole strength:

from Skyrme HFB (SkO' and SkM*)

- □ T=1 pn pairing: value which vanishes 2v closure matrix element
- □ Gamow-Teller interaction: ⁷⁶Ge GT- resonance peak from Skyrme-QRPA
- **Π** T=0 pn pairing: total β + strength of ⁷⁶Se

Test calculation in solvable SO(8) model

SO(8): solvable version of the previous Hamiltonian (w/o sp energy, quadrupole int) GCM with isoscalar pairing coordinate 2v GT (closure) matrix element of T=4 \rightarrow T=2

⁷⁶Ge→⁷⁶Se 0v matrix element

QRPA: collapse near the phase transition $g^{T=0}/g^{T=1} \sim 1.6$ GCM: smooth dependence on isoscalar pairing

Skyrme	no gph/ g ^{⊤=0}	no g ^{T=0}	1D full	QRPA
SkO'	14.0	9.5	5.4	5.6
SkM*	11.8	9.4	4.1	3.5

⁷⁶Ge→⁷⁶Se 0v matrix element

negative region at large isoscalar paring of final state isoscalar pairing shifts the wave function to isoscalar region

Inclusion of quadrupole deformation (2D GCM)

collective wave function (isoscalar pairing d.o.f. integrated out)

SkO'

SkM*

5.4

4.1

4.7

4.7

5.6

3.5

Rodríguez and Martinez-Pinedo Prog. Part. Nucl. Phys. **66** (2011) 436.

Gogny beta-GCM: 4.6 PRL105,252503(2010) Gogny beta+delta GCM: 5.6 PRL111,142501(2013) Skyrme pnQRPA SkM*: 5.1 PRC87, 064302(2013)

$$g^{T=0}/g^{T=1} = 0.0$$

SkM* collective wave function $\Phi(\beta, P_0)$

 $g^{T=0}/g^{T=1} = 1.0$

 $g^{T=0}/g^{T=1} = 1.5$

 $g^{T=0}/g^{T=1} = 2.0$

 $g^{T=0}/g^{T=1} = 3.0$

Summary

- Onu nuclear matrix elements are calculated using generator coordinate method including both axial quadrupole deformation and isoscalar/ isovector proton-neutron pairing degrees of freedom.
- □ The approach explores the physics of beyond QRPA and shell model
 - accurate description of pn correlation
 - □ large single-particle model space

Future extensions

- □ Improve effective interaction (from shell model)
- □ Inclusion of triaxiality
- □ Formulation based on DFT (theoretical problems in projections)