The β Decay of ³⁸Ca:

Sensitive Test of Isospin Symmetry-Breaking Corrections from Mirror Superallowed $0^+ \rightarrow 0^+$ transitions

H.I. Park, J.C. Hardy, V.E. Iacob, M. Bencomo, L. Chen, V Horvat, N. Nica, B.T. Roeder, E. Simmons, R.E. Tribble, and I.S. Towner

> Cyclotron Institute Texas A&M University ARIS 2014 Tokyo Japan

Superallowed $0^{+} \rightarrow 0^{+}$ nuclear β decay

$$\mathrm{ft} = \frac{\mathrm{K}}{\mathrm{G}_{\mathrm{v}}^{\mathrm{2}} \langle \mathrm{M}_{\mathrm{F}} \rangle^{\mathrm{2}}}$$

f = statistical rate function $f(Z, Q_{EC})$ t = partial half-life $f(t_{1/2}, BR)$ G_V = vector coupling constant M_F = Fermi matrix element

Including corrections

$$\mathcal{F}t = ft(1+\delta_{R}')[1-(\delta_{C}-\delta_{NS})] = \frac{K}{2G_{V}^{2}(1+\Delta_{R}^{V})}$$

 δ_{C} = isospin-symmetry breaking correction $\delta'_{R,} \delta_{NS}$ = radiative correction (transition dependent) Δ_{R} = radiative correction (transition independent)

Superallowed $0^{+} \rightarrow 0^{+}$ nuclear β decay

$$ft = \frac{K}{G_v^2 \langle M_F \rangle^2}$$

f = statistical rate function $f(Z, Q_{EC})$ t = partial half-life $f(t_{1/2}, BR)$ G_V = vector coupling constant M_F = Fermi matrix element

Including corrections

World data for superallowed $0^+ \rightarrow 0^+ \beta$ decay (2009)

• Approximately 150 individual measurements made contributions with compatible precision.

• The 13 best-known transitions: the ft values for 10 cases have been measured to 0.1% precision or better; 3 more cases to <0.3% precision.

• Results: $G_V \text{ constant}$ $- \text{ verified to } \pm 0.013\%$ $|V_{ud}| = G_V / G_\mu$ $= 0.97425 \pm 0.00022$ CKM unitarity $- \text{ satisfied at } \pm 0.06\%$ $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2$ $= 0.99990 \pm 0.00060$

Error budget for V_{ud} determined from $0^+ \rightarrow 0^+$ decays

STITUTE

Testing $\boldsymbol{\delta}_{C}$ calculations by experiment

Our strategy is to compare the ft values from a pair of mirror superallowed decays.

Accepting CVC is valid : $\mathcal{T}t = ft(1 + \delta_R)[1 - (\delta_C - \delta_{NS})] = CONST$

CYCLOTRON INSTITUTE TEXAS A&M UNIVERSITY

V

Testing δ_C calculations by experiment

Testing δ_C calculations by experiment

Experimental set-up for branching-ratio measurement

Challenges for the decay of ³⁸Ca

Complex decays require direct branchingratio measurements approaching $\pm 0.1\%$.

Our approach: $BR_F = 1 - \Sigma BR_{GT}$

$$\mathbf{R}_{i} = \frac{\mathbf{N}_{\beta \gamma_{i}}}{\mathbf{N}_{\beta} \varepsilon_{\gamma_{i}}} \frac{\varepsilon_{\beta}}{\varepsilon_{\beta_{i}}} \mathbf{k}$$

Experimental corrections	
Real-coincidence summing	+2.6(3)%
Dead time + pile-up	+1.37(1)%
Energy dependence of β-detection efficiency	+0.38(4)%
γ detection in β detector	-0.043(4)%

Results for the beta-decay branching of ³⁸Ca

Summary

- The branching ratio for the superallowed transition of ³⁸Ca has been measured to ±0.2% precision for the first time.
- This is the first addition to the set of well-known superallowed transitions in nearly a decade.
- Isospin-symmetry-breaking correction is experimentally tested by measurements of ³⁸Ca.
- It can be further tested and improved by adding new transitions from T_z = -1 parents with a higher experimental precision.

Collaborators at TAMU

J.C. Hardy V.E. Iacob M. Bencomo L. Chen V. Horvat N. Nica B.T. Roeder R.E. Tribble