High-Precision Half-life Measurements for the Superallowed Fermi β⁺ Emitters ¹⁴O and ¹⁸Ne Alex Laffoley University of Guelph

ARIS 2014

2 June 2014

Extracting V_{ud} from Superallowed Fermi β Decays

To first order, β decay *ft* values can be expressed as:

phase space (Q-value)
$$\longrightarrow ft = \frac{K}{g^2 |M_{fi}|^2} \leftarrow \text{matrix element}$$

half-life, branching ratio \uparrow
Weak coupling strength

For the special case of $0^+ \rightarrow 0^+$ (pure Fermi) β decays between isobaric analogue states (superallowed) the matrix element is that of an isospin ladder operator:

$$|\mathbf{M}_{fi}|^2 = (T - T_Z)(T + T_Z + 1) = 2$$
 (for $T = 1$)

Strategy: Measure superallowed *ft*-values, deduce G_V and V_{ud}

Vector coupling $\longrightarrow G_V^2 = \frac{K}{2ft}$ $|V_{ud}| = G_V / G_F \longleftarrow$ Fermi coupling constant

Extracting V_{ud} from Superallowed Fermi β Decays

To first order, β decay *ft* values can be expressed as:

Strategy: Measure superallowed *ft*-values, deduce G_V and V_{ud}

Vector coupling $\longrightarrow G_V^2 = \frac{K}{2ft}$ $|V_{ud}| = G_V / G_F \longleftarrow$ Fermi coupling constant

Superallowed ft Values

Superallowed Fermi B Decay: Corrections

 $\mathcal{F}t \equiv ft(1+\delta_{\rm R})(1+\delta_{\rm NS}-\delta_{\rm C}) = \frac{\rm K}{2G_{\rm V}^2(1+\Delta_{\rm R}^{\rm V})} =$

"Corrected" ft value

Calculated corrections (~1%) Experiment (nucleus dependent) • Half-life • O-value • Branching Ratio

CVC Hypothesis

Inner radiative correction ($\sim 2.4\%$) (nucleus independent)

 $\Delta_{\rm R}$ = nucleus independent inner radiative correction: 2.361(38)%

 $\delta_{\rm R}$ = nucleus dependent radiative correction to order Z² α^3 : ~1.4% - depends on electron's energy and Z of nucleus

 δ_{NS} = nuclear structure dependent radiative correction: -0.3% to 0.03%

 $\delta_{\rm C}$ = nucleus dependent isospin-symmetry-breaking (ISB) correction: 0.2% to 1.5% - strong nuclear structure dependence (radial overlap)

Note: This is one of several approaches for making the necessary theoretical corrections. Although others exist, the procedure of Towner & Hardy are highlighted here.

Corrected *Ft* Values

P. Finlay, *et al.*, Phys. Rev. Lett. **106**, 032501 (2011)
R. Dunlop, *et al.*, Phys. Rev. C **88**, 045501 (2013)

CKM Unitarity

J.C. Hardy and I.S. Towner, Phys. Rev. C 79, 055502 (2009)
R.J. Dowdall *et al.*, Phys. Rev. D 88, 074504 (2013)
Particle Data Group J. Beringer *et al.*, Phys Rev D 86, 010001 (2012)

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1.00009(\overline{43})_{Vud}(24)_{Vus}$

Extracting V_{ud} from Superallowed Fermi β Decays

To first order, β decay *ft* values can be expressed as:

Strategy: Measure superallowed *ft*-values, deduce G_V and V_{ud}

Vector coupling $\longrightarrow G_V^2 = \frac{K}{2ft}$ $|V_{ud}| = G_V / G_F \longleftarrow$ Fermi coupling constant

Testing Extensions of the SM

Set sensitive limits on the existence of scalar currents in nuclear β decay

- $\mathcal{F}t$ values for ¹⁰C, ¹⁴O, and ¹⁸Ne are the most important
- Complementary to measurements of β-v angular correlation coefficients "*a*"
- Resolving trivial sources of systematic uncertainty in superallowed data are essential

TRIUMF-ISAC

Up to $100 \ \mu$ A, 500 MeV proton beams from the TRIUMF main cyclotron produce high-intensity secondary beams of many of the superallowed emitters by the ISOL technique.

4π Gas Counter

- 4π continuous-flow gas-proportional counter and tape transport system
- ♦ Uses methane (CH_4) gas
- 100% efficient β counter
- Very low background rates
- ♦ Insensitive to γ -rays

$8\pi \gamma$ -Ray Spectrometer

- ♦ Spherical array of 20 BGO Compton suppressed HPGe detectors
- $\sim 1\%$ photopeak efficiency
- ♦ Works with an array of ancillary detectors

Zero Degree Scintillator (ZDS)

- \Leftrightarrow A fast plastic scintillator used for β counting
- \diamond Covers ~20% of the solid angle
- ♦ Impose fixed non-extendible dead-times

¹⁴O Half-Life Measurement

Simultaneous independent direct β and γ -ray counting experiments using the 8π spectrometer and the Zero-Degree Scintillator.

γ Counting:-Decay Selective-Slow & Inefficient

β Counting: -Fast & Efficient -Not Decay Selective Previous measurements reveal a systematic discrepancy between detection method

Detection Method Discrepancy

¹⁴O Half-Life Measurement

Beam
$$\begin{cases} {}^{12}\text{C}\text{-}{}^{14}\text{O}\text{: }\text{T}_{1/2} = 70.620 \text{ s} \\ {}^{26}\text{Al}\text{m}\text{: }\text{T}_{1/2} = 6.3465 \text{ s} \\ {}^{26}\text{Na}\text{: }\text{T}_{1/2} = 1.072 \text{ s} \end{cases}$$

Status of ¹⁴O Half-Life

A.T. Laffoley et al., Phys. Rev. C 88, 015501 (2013)

- Performing simultaneous
 β and γ half-life
 measurements for ¹⁴O will
 help address the current
 systematic discrepancy.
- A follow-up experiment is scheduled for July to push below 0.03% precision.
- Precision *ft* determination of light superallowed Fermi β
 emitters will help push the limits of scalar currents in the Weak interaction.

Sample Data – Gas Counter

Status of ¹⁸Ne Half-life

Conclusions

- ♦ The systematic difference between half-life detection method has been resolved
- * An upcoming ¹⁴O experiment, using the 4π gas counter, will push the precision below 0.03%
- ♦ We measured the half-life of ¹⁸Ne to ±0.025%, a factor of 3 times improvement over previous measurements
- In combination with recent BR measurement performed at GANIL, the *ft* value of superallowed Fermi β⁺ emitter ¹⁸Ne will now be among the set of high-precision cases
- These high-precision half-life measurements are important in setting limits on scalar currents in the Weak interaction
- * Improving the precision of the ft measurements for superallowed Fermi emitters will reduce the uncertainty for V_{ud}
- * Will be used to help differentiate between theoretical models for the δ_C (isospin-symmetry-breaking) correction

Thank You! JNIVERSITY & GUELPH

V. Bildstein G. Deng A. Diaz Varela M. Dunlop R. Dunlop Z. Fairchild P. Finlay P. E. Garrett B. Hadinia D. S. Jamieson B. Jigmeddorj A. Radich E. T. Rand C. E. Svensson

G. C. Ball P. C. Bender T. Bruhn A. B. Garnsworthy G. Hackman S. Ketelhut K. G. Leach B. Mills M. Moukaddam M. M. Rajabali E. Tardiff C. Unsworth

E. F. Zganjar

B. Blank J. Giovinazzo

J. R. Leslie

SFU

C. Andreoiu D. S. Cross P. Voss

H. Bouzomita G. F. Grinyer J. C. Thomas

R. A. E. Austin