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To first order, β decay ft values can be expressed as:

ft =
K

g2|Mfi|
2

constants

matrix element

phase space (Q-value)

half-life, branching ratio

For the special case of  0+ 0+ (pure Fermi) β decays between isobaric 

analogue states (superallowed) the matrix element is that of  an isospin

ladder operator: 

|Mfi|
2 =  (T – TZ)(T + TZ + 1) =  2      (for T = 1) 

Strategy: Measure superallowed ft-values, deduce GV and Vud
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2ft
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2 = |Vud| = GV / GF
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Fermi coupling
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Superallowed Fermi β Emitters have been used to:

• Confirm the CVC hypothesis to better than 2 parts in 104

• Provide the most precise experimental measure for Vud

• Test extensions of  the Standard Model



J.C. Hardy and I.S. Towner, Phys. Rev. C 79, 055502 (2009)
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K

2 Gv
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=  constant  (CVC)

2%



K

2GV(1 + ΔR)
= constant2 V

DR = nucleus independent inner radiative correction: 2.361(38)%

dR = nucleus dependent radiative correction to order Z2a3:  ~1.4% 

- depends on electron’s energy and Z of  nucleus

dNS = nuclear structure dependent radiative correction: -0.3% to 0.03%

dC = nucleus dependent isospin-symmetry-breaking (ISB) correction: 0.2% to 1.5%

- strong nuclear structure dependence (radial overlap)

“Corrected” 
ft value

Experiment

◦ Half-life

◦ Q-value

◦ Branching Ratio

Calculated corrections (~1%)

(nucleus dependent)

Inner radiative correction (~2.4%)

(nucleus independent)

CVC Hypothesis

Note: This is one of  several approaches for making the necessary theoretical corrections. Although others exist, the procedure of  

Towner & Hardy are highlighted here.



FtWS = 3072.38(75)

χ2/ν = 0.32

P. Finlay, et al., Phys. Rev. Lett. 106, 032501 (2011)

R. Dunlop, et al., Phys. Rev. C 88, 045501 (2013)
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Testing Extensions of  the SM

Set sensitive limits on the existence of  scalar currents in nuclear β decay
 Ft values for 10C, 14O, and 18Ne are the most important

 Complementary to measurements of  β-ν angular correlation 

coefficients “a”

 Resolving trivial sources of  systematic uncertainty in superallowed

data are essential 

CS/CV ± 0.2%





 4π continuous-flow gas-proportional 

counter and tape transport system

 Uses methane (CH4) gas

 100% efficient β counter

 Very low background rates

 Insensitive to γ-rays

28 cm



8π γ-Ray Spectrometer

 Spherical array of  20 BGO Compton suppressed HPGe detectors

 ~1% photopeak efficiency

 Works with an array of  ancillary detectors



Zero Degree Scintillator (ZDS)

 A fast plastic scintillator used for β counting

 Covers ~20% of  the solid angle

 Impose fixed non-extendible dead-times



Simultaneous independent direct β

and γ-ray counting experiments 

using the 8π spectrometer and the 

Zero-Degree Scintillator.

γ Counting: 

-Decay Selective

-Slow & Inefficient

β Counting: 

-Fast & Efficient

-Not Decay 

Selective

Previous measurements 

reveal a systematic 

discrepancy between 

detection method



1.6σ discrepancy → Ft value could 

change by up to 0.5σ



12C-14O: T1/2 = 70.620 s  

26Alm: T1/2 = 6.3465 s

26Na: T1/2 = 1.072 s

Beam



β

γ



Status of  14O Half-Life

 Performing simultaneous 

β and γ half-life 

measurements for 14O will 

help address the current 

systematic discrepancy.

 A follow-up experiment is 

scheduled for July to push 

below 0.03% precision.
 Precision ft

determination of  light 

superallowed Fermi β 

emitters will help push the 

limits of  scalar currents in 

the Weak interaction.
A.T. Laffoley et al., Phys. Rev. C 88, 015501 (2013)



18Ne Decay Scheme
18Ne 0+T = 1

T½ = 1.6654(11) s
Q = 4443.6 keV

β+

β+

β+

18F

1+ 1701   0.19%

1+ 0        92.11%

0- 1081   0.0002%

0+ 1042   7.70%

β+

18O 0+

T = 0

T = 1

stable

T½ = 109.73(2) min

Q = 1655.5 keV

T = 1T = 1





Half-life precision improved 

by a factor of  3, to 0.025%!

Preliminary
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