\(^{129}\text{Xe}\) EDM search experiment using active nuclear spin maser

Tokyo Institute of Technology
Tomoya SATO
EDM, the new physics indicator

Electric dipole moment

\[d = d \frac{s}{s} \]

T-violation

Discovery of the finite value of the EDM

→ Discovery of the new physics beyond the SM!!
The origin of atomic EDM

Schiff moment

\[\hat{S}_{\text{ch}} = \frac{1}{10} \sum_{i=1}^{A} e_i \left(r_i^2 - \frac{5}{3} \langle r^2 \rangle_{\text{ch}} \right) r_i \]

- From a shell model point of view

\[
S(k) = \sum_{k=1}^{1} \frac{\left| \frac{1}{2_1} \right| \left| \text{ch}_{z} \right| \left| \frac{1}{2_2} \right|^* \left| \left| V_{\frac{1}{2}}^{PT} \left| \frac{1}{2_1} \right| \right|}{E_{1}^{(+)} - E_{k}^{(-)}} + \text{c. c.}
\]

The atomic EDM of the 129Xe

- EDM is generated through the Schiff moment (P,T-odd NN interaction, reflect nuclear structure)
- Stable nuclei, huge amount of atoms ($\sim 10^{23}$)

2nd Conference on Advances in Radioactive Isotope Science (ARIS 2014), June 1-6, 2014, Tokyo, Japan
Current status of the EDM searches

<table>
<thead>
<tr>
<th>Year of publication</th>
<th>Neutron</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
</tr>
</tbody>
</table>

Our target

\[|d(^{129}\text{Xe})| = 10^{-28} \, \text{e} \cdot \text{cm} \]

\[E = 10 \, \text{kV/cm} \]

Prediction value of the EDM

- \[|d(^{199}\text{Hg})| < 3.1 \times 10^{-29} \, \text{ecm} \]
 Griffith et al., *PRL* 102 (2009) 101601

- \[|d(^{129}\text{Xe})| < 4.1 \times 10^{-27} \, \text{ecm} \]
 Rosenberry and Chupp, *PRL* 86 (2001) 22

Standard Model

\[(d_n = 10^{-(31-33)}) \]

[Pendlebury and Hinds, *NIM A* 440 (00) 471]
How to measure the EDM

- Energy splitting changes due to the EDM

\[\begin{align*}
B = 0 & \quad E = 0 \\
B \neq 0 & \quad E = 0 \\
B = 0 & \quad E \neq 0 \\
B \neq 0 & \quad -E \neq 0
\end{align*} \]

\[\begin{align*}
h\nu_0 & \quad h\nu_+ \\
h\nu_- & \quad h\nu_-
\end{align*} \]

\[m = -1/2 \]

\[m = +1/2 \]

\[\nu_+ = \frac{2\mu B + 2dE}{h} \]

\[\nu_- = \frac{2\mu B - 2dE}{h} \]

\[d = \frac{h\Delta\nu}{4E} \]

\[(\Delta\nu = \nu_+ - \nu_-) \]

- Consecutive measurement of spin precession (Maser)

\[\delta\nu_{\text{final}} \propto \frac{\delta\phi}{T_m^{3/2}} = \left[\text{Fourier width: } \frac{1}{T_m} \right] \times \frac{1}{[\text{data points: } T_m]^{1/2}} \]
Active nuclear spin maser

“Optically manipulated” spin maser with a feedback field generated by optical spin detection

$H = \alpha \mathbf{I} \cdot \mathbf{S}$

$= \frac{\alpha}{2}(I_+ S_- + I_- S_+) + \alpha I_z S_z$

Static magnetic field: $B_0 \sim \text{mG}$

Feedback system

Feedback circuit

Lock-in detection

Precession signal

Frequency precision of 129Xe maser

Frequency precision in one-shot measurement

$\Delta \nu \sim 10 \text{ nHz}$

Frequency stability between repeated measurements

$\Delta \nu \sim 1 \text{ mHz}$

Long term drifts of the external magnetic field
3He co-magnetometry

- **129Xe frequency:** $B_0 + \text{EDM}$
- **3He frequency:** B_0

- *in situ* magnetometry
- Negligible EDM in 3He
- Correlation in phase: $\Phi_{Xe}(t) = \frac{\gamma_{Xe}}{\gamma_{He}} \Phi_{He}(t)$
Contact interaction with pol. Rb atoms

\[
\nu(^{129}\text{Xe}) = \frac{\gamma(^{129}\text{Xe})}{2\pi} \left\{ B_0 + \kappa_{\text{Rb-Xe}}[\text{Rb}]P_{\text{Rb}} \right\} \pm \frac{4d}{h}E \\
\nu(^{3}\text{He}) = \frac{\gamma(^{3}\text{He})}{2\pi} \left\{ B_0 + \kappa_{\text{Rb-He}}[\text{Rb}]P_{\text{Rb}} \right\}
\]

Static & Env. mag. field Freq. shift due to pol. Rb

Frequency shift of \(^{129}\text{Xe}/^{3}\text{He} due to contact interaction with polarized Rb

\[\Delta \nu \propto \kappa \left[\text{Rb} \right] P_{\text{Rb}}\]

<table>
<thead>
<tr>
<th>Rb number density</th>
<th>Rb Polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\kappa_{0 \text{Xe-Rb}} = 493(31)) [1]</td>
<td>(\kappa_{0 \text{He-Rb}} = 4.52 + 0.00934T) [2]</td>
</tr>
</tbody>
</table>

Reduction of the pol. Rb atoms

Advantages

- Reduce P_{Rb} at probe section
- Different temperature at pumping & probe sections

Difficulties

- Reduction of $P(^{129}Xe)$ as diffusion
- Reduction of maser signal due to reduced P_{Rb}

$\Delta v_{Xe/He}$ (Maser frequency shift) = $\propto \kappa_{Xe/He}$ (Coefficient) $\times [Rb] \times P_{Rb}$

- Double cell geometry
- Linearly polarized laser light
Experimental setup

Photo diode

3 layer magnetic shield

Static magnetic field coil

B_0

Photo Elastic Modulator

$\lambda/2$ plate

PBS

Pumping laser
- wave length: 794.76 nm (Rb D1 line)
- line width: ~ 10 MHz
- output: 1.8 W

Probe laser
- wave length: 794.76 nm (depend on measurement condition)
- line width: ~ 10 MHz
- output: 10 mW
Experimental setup

- Magnetic shield
- Env. field cancellation coil
- Lin. Pol. light
- Probe light
- Pumping light
First trial of $^{129}\text{Xe}/^{3}\text{He}$ dual spin maser with double cell geometry
129Xe/3He frequency analysis (1)

Maser frequencies (stable region, 100s averaged)
$^{129}\text{Xe}/^{3}\text{He}$ frequency analysis (2)

Verification is continued.
Towards measurement of Xe-EDM

Birth of the active feedback spin maser

Maser stability improvement
(B-field, temperature, gas pressure, etc...)

EDM measurement trial with spherical cell

$^3\text{He}/^{129}\text{Xe}$ maser (spherical cell)

Double cell geometry

$^3\text{He}/^{129}\text{Xe}$ maser (double cell)

Remaining (on going) steps
- Verification of ^3He co-magnetometry
- Development of EDM cell with transparent electrodes
Search for 129Xe EDM aiming at 10^{-28} ecm region

Active nuclear spin maser
- Optical detection of spin + Artificial feedback

Development
- 3He co-magnetometry (reduce B-field fluctuation)
- Double-cell geometry (minimize interaction with pol. Rb)
- Dual spin masers of 129Xe/3He using double cell

Future outlook
- Evaluation of systematic uncertainty
- EDM cell (with Electrode) development
- EDM measurement
Tokyo Institute of Technology

RIKEN Nishina Center
Y. Ichikawa, H. Ueno

Tokyo Metropolitan University
T. Furukawa

Tohoku University
T. Inoue

Okayama University
A. Yoshimi

University of Winnipeg
C. P. Bidinosti

KEK
T. Ino

Hosei University
Y. Matsuo

RCNP, Osaka University
T. Fukuyama