2nd Conference on Advances in Radioactive Isotope Science (ARIS 2014) June 1-6, 2014, Tokyo, Japan

¹²⁹Xe EDM search experiment using active nuclear spin maser

Tokyo Institute of Technology Tomoya SATO

EDM, the new physics indicator

Discovery of the finite value of the EDM

Discovery of the new physics beyond the SM!!

The origin of atomic EDM

Schiff moment

Current status of the EDM searches

2nd Conference on Advances in Radioactive Isotope Science (ARIS 2014), June 1-6, 2014, Tokyo, Japan

How to measure the EDM

Energy splitting changes due to the EDM

Consecutive measurement of spin precession (Maser)

Active nuclear spin maser

"Optically manipulated" spin maser

with a feedback field generated by optical spin detection

2nd Conference on Advances in Radioactive Isotope Science (ARIS 2014), June 1-6, 2014, Tokyo, Japan

Frequency precision of ¹²⁹Xe maser

2nd Conference on Advances in Radioactive Isotope Science (ARIS 2014), June 1-6, 2014, Tokyo, Japan

³He co-magnetometry

Contact interaction with pol. Rb atoms

Frequency shift of ¹²⁹Xe/³He due to contact interaction with polarized Rb

 $\Delta \nu \propto \kappa [Rb] P_{Rb}$ Rb number Rb
density Polarization

 $\begin{cases} \kappa_{0 \text{ Xe-Rb}} = 493(31) \ ^{[1]} \\ \kappa_{0 \text{ He-Rb}} = 4.52 + 0.00934T \ ^{[2]} \end{cases}$

[1] Z. L. Ma *et al.*, Phys. Rev. Lett. 106, 193005 (2011)
[2] M. V. Romalis *et al.*, Phys. Rev. A 58, 3004 (1998)

Reduction of the pol. Rb atoms

 $\Delta v_{\text{Xe/He}} \text{(Maser frequency shift)} \\ \propto \kappa_{\text{Xe/He}} \text{(Coefficient)} \times \text{[Rb]} \times P_{\text{Rb}}$

- Double cell geometry
- Linearly polarized laser light

Advantages

- > Reduce P_{Rb} at probe section
- Different temperature at pumping & probe sections

Difficulties

- > Reduction of $P(^{129}Xe)$ as diffusion
- \succ Reduction of maser signal due to reduced $P_{\rm Rb}$

Experimental setup

Experimental setup

Magnetic shield

Env. field cancellation coil

(O) TOP

Lin. Pol. light

Probe light

Pumping light

TA 100

11

Dual spin maser with double cell geometry

First trial of ¹²⁹Xe/³He dual spin maser with double cell geometry

¹²⁹Xe/³He frequency analysis (1)

Maser frequencies (stable region, 100s averaged)

2nd Conference on Advances in Radioactive Isotope Science (ARIS 2014), June 1-6, 2014, Tokyo, Japan

¹²⁹Xe/³He frequency analysis (2)

Towards measurement of Xe-EDM

Birth of the active feedback spin maser

Maser stability improvement

(B-field, temperature, gas pressure, etc...)

³He/¹²⁹Xe maser (double cell)

Remaining (on going) steps

- Verification of ³He co-magnetometry
- Development of EDM cell with transparent electrodes

■Search for ¹²⁹Xe EDM aiming at 10⁻²⁸ ecm region

□ Active nuclear spin maser

✓ Optical detection of spin + Artificial feedback

Development

- ✓ ³He co-magnetometry (reduce B-field fluctuation)
- ✓ Double-cell geometry (minimize interaction with pol. Rb)
- ✓ Dual spin masers of ¹²⁹Xe/³He using double cell

□ Future outlook

- ✓ Evaluation of systematic uncertainty
- ✓ EDM cell (with Electrode) development
- ✓ EDM measurement

Tokyo Institute of Technology

T. Sato, Y. Ohtomo, Y. Sakamoto, S. Kojima, T. Suzuki, H. Shirai, M. Chikamori, E. Hikota, H. Miyatake, T. Nanao, K. Suzuki, M. Tsuchiya, K. Asahi

RIKEN Nishina Center

Y. Ichikawa, H. Ueno

Tokyo Metropolitan University T. Furukawa

Tohoku University T. Inoue

Okayama University A. Yoshimi

University of Winnipeg C. P. Bidinosti *KEK* T. Ino

Hosei University Y. Matsuo *RCNP, Osaka University* T. Fukuyama