Electron-Capture Rates for Exotic Nuclei at Stellar Environments

Toshio Suzuki
Nihon University

ARIS2014
June 2, 2014
• GT strengths in Ni and Fe isotopes by new shell model Hamiltonians, GXPF1J
• Electron capture rates for Ni, Fe, (Co, Mn) isotopes at stellar environments
• Type-Ia supernova explosions and nucleosynthesis
 \[^{56}\text{Ni}(e^{-}, \nu)^{56}\text{Co} \]
• rp-process and XRB (X-ray burst)
 \[^{55}\text{Ni}(e^{-}, \nu)^{55}\text{Co} \]
• Type-II core-collapse supernova explosions
 e-capture rates on Fe isotopes
○ New shell-model Hamiltonians in fp-shell:

GXPF1: Honma et al., PR C65 (2002); C69 (2004)

KB3: Caurier et al., Rev. Mod. Phys. 77, 427 (2005)

○ KB3G $A = 47$-52 KB + monopole corrections

○ GXPF1 $A = 47$-66

• Spin properties of fp-shell nuclei are well described

$B(GT)$ for 58Ni $g_A^{\text{eff}}/g_A^{\text{free}}=0.74$

M1 strength ($GXPF1J$)

$g_S^{\text{eff}}/g_S=0.75 \pm 0.2$

![Graphs and data points](image)

- Fujita et al.
- Comparison between theoretical predictions and experimental data.
Electron-capture rate in stellar environment

\[\epsilon^- + Z\, A \rightarrow \nu + (Z-1)\, A \]

\[T = 0: \mu + M(Z\, A) \geq M((Z-1)\, A) \]

\[\mu \geq M(Z-1\, A) - M(Z\, A) \]

\[\rho Y_e = 10^7 - 10^{10} \, \text{g/cm}^3 \]

\[T = T_9 \times 10^9 \, \text{K} \]

Chemical potential of \(\epsilon^- (\mu) \) increases at high density.

\[\lambda = \frac{\ln 2}{6146(s)} \sum_j B_j(GT) \int_0^\infty \omega p(Q_j + \omega)^2 F(Z, \omega) S_e(\omega) d\omega \]

\[Q_j = (M_p c^2 - M_d c^2 - E_j)/m_e c^2 \]

\[T = T_9 \times 10^9 \, \text{K}, \quad S_e(E_e) = \frac{1}{\exp[(E_e - \mu_e)/kT] + 1} \]

\[\rho Y_e = \frac{1}{\pi^2 N_A} \left(\frac{m_e c}{\hbar} \right)^3 \int_0^\infty (S_e - S_p) p^2 dp \quad \mu_p = -\mu_e \]
Sasano et al.
PRL 107, 202501 (2011)

\[f_7/2 \rightarrow f_5/2 \]

e-capture rates in stellar environments

\[\rho Y_e = 10^7 - 10^{10} \text{ g/cm}^3 \]

\[T = T_9 \times 10^9 \text{ K} \]
Type-Ia supernova explosion

Accretion of matter to white-dwarf from binary star → supernova explosion when white-dwarf mass > Chandrasekhar limit → ^{56}Ni (N=Z) → ^{56}Ni (e$^-$, ν) ^{56}Co $Y_e=0.5 \rightarrow Y_e < 0.5$ (neutron-rich) → production of neutron-rich isotopes; more ^{58}Ni

Decrease of e-capture rate on ^{56}Ni → less production of ^{58}Ni.

e-capture rates: GXPF1J < KB3G $\leftarrow \rightarrow Y_e \text{(GXPF1J)} > Y_e \text{(KB3G)}$
Problem of over-production of ^{58}Ni

and ignition densities to put new constraints on the above key quantities. The abundance of the Fe group, in particular of neutron-rich species like ^{48}Ca, ^{50}Ti, ^{54}Cr, $^{54,58}\text{Fe}$, and ^{58}Ni, is highly sensitive to the electron captures taking place in the central layers. The yields obtained from such a slow central NSE calculation by Famiano and Ye show decreasing trends for $^{58}\text{Ni}/^{56}\text{Ni}$.

Ratio between $^{58}\text{Ni}/^{56}\text{Ni}$

Graphs showing the decrease in $^{58}\text{Ni}/^{56}\text{Ni}$ for different models and densities.
rp-process and X-ray burst

\((p, \gamma) \; \& \; \beta^+\text{-decay/e-capture}\)

\[\rightarrow ^{50}\text{Fe}(e^+,\nu)^{50}\text{Mn} \quad ^{50}\text{Fe}(e^-,\nu)^{50}\text{Mn}\]

\[\rightarrow ^{55}\text{Ni}(e^-,\nu)^{55}\text{Co}\]

Parikh et al., PPNP 69, 225 (2013)
X-ray burst

\[^{56}\text{Ni} \rightarrow ^{56}\text{Cu} \]

- e-capture and beta-decay rates with KBF:
 Langanke and Martinez-Pinedo, Atomic Data and Nuclear Data Tables 79, 1 (2001)

Sn-Sb-Te cycle

\[^{60}\text{Zn}, ^{64}\text{Ge}, ^{68}\text{Se} \]
Type-II Core-Collapse SNe

Rates for ^{54}Fe, ^{55}Fe, ^{56}Fe, ^{57}Fe

GXPF1J vs. KBF

Langanke and Martinez-Pinedo, RMP 75 (2003)
Rates for ^{54}Fe, ^{56}Fe

GXPF1J vs. KBF

- **$^{54}\text{Fe}(e^-, \nu)^{54}\text{Mn}$**
 - $\rho_{Y_e}=10^7$
 - $\rho_{Y_e}=10^8$
 - $\rho_{Y_e}=10^9$

- **$^{56}\text{Fe}(e^-, \nu)^{56}\text{Mn}$**
 - $\rho_{Y_e}=10^7$
 - $\rho_{Y_e}=10^8$
 - $\rho_{Y_e}=10^9$

e-capture rates

- **GXP > KBF** for $^{54,55,56}\text{Fe}$
 - $Y_e \downarrow$ for GXP

- **GXP < KBF** for ^{57}Fe
 - $Y_e \uparrow$ for GXP
$^{60}\text{Co} \rightarrow ^{60}\text{Fe}$

$\rho Y_e = 10^7 \sim 10^{10}$

- Langanke and Martinez-Pinedo, Atomic and Nucl. Data Tables (2001)
Summary

• A new shell model Hamiltonian GXPF1J well describes the spin responses in fp-shell niclei
 → new GT strengths in Ni and Fe isotopes

• GT strengths and electron capture rates in ^{56}Ni, ^{55}Co, ^{58}Ni, ^{60}Ni are well described by GXPF1J.
 Suzuki, Honma, Mao, Otsuka, Kajino, PR C83, 044619 (2011)

• Effects on Type Ia SNe nucleosynthesis, rp-process and XRB, Type-II core-collapse SNe are discussed

Collaborators

M. Honmaa, T. Otsukab, T. Kajinoc,d, M. Famiano

aUniversity of Aizu

bDepartment of Physics and CNS, University of Tokyo

cDepartment of Astronomy, University of Tokyo

dNational Astronomical Observatory of Japan