

Studies of X-Ray Burst *αp*-process Waiting Points using Radioactive Ion Beams at ATLAS

Catherine M. Deibel Louisiana State University

Type I X-Ray Bursts (XRBs)

Neutron stars: 1.4 M_o, 10 km radius

Normal star

Accretion rate ~ $10^{-8}/10^{-10}$ M_o/year Peak x-ray burst temperature ~ 1.5 GK Recurrence rate ~ hours to days Burst duration of 10 - 100 s Observed x-ray outburst ~ $10^{39} - 10^{40}$ ergs

D.K. Galloway et al., ApJ 601 466 (2004).

X-Ray Burst Nucleosynthesis

- Pre-burst hot CNO cycle ullet
 - burns H into He
 - results in persistent thermal Xray spectrum
- Triple- α reaction ignites burst
 - $-3\alpha \rightarrow {}^{12}C$
 - − T~10⁸ K

H. Schatz, K. E. Rehm, NPA 777, 601 (2006)

Nucleosynthesis proceeds up proton-rich side of stability:

- rp (rapid proton capture) process
 - (p, γ) reactions and β decays
- αp process
 - (α, p) and (p, γ) reactions
- peak temperatures of 1 2 GK

αp -process waiting points

Nuclei with low Q_{pγ} values and long (~ 1 s) β–decay half lives:
– ²²Mg, ²⁶Si, ³⁰S and ³⁴Ar

- (p,γ)-(γ,p) equilibrium is reached and nucleosynthesis stalls awaiting β decay or breaks out via (α,p) reaction
- Effects of waiting points:
 - final elemental abundances
 - energy output of XRB
 - luminosity profiles (multipeaked structure)

Nuclear Structure Information

- ${}^{30}S + \alpha \rightarrow {}^{34}Ar$ compound nucleus
- At T ~ 1 GK (peak temperature)
 - Gamow peak located at 8.61 MeV
 - only one known level in window
- Similar situations for other waiting point nuclei
- Indirect studies at RCNP, Osaka and Notre Dame have been completed to determine level structure

[e.g. O'Brien AIP Conf. Proc. **101** 288 (2009), S. Almaraz-Calderon PRC **86** 065805 (2012)]

Studying (α, p) Waiting Points via (p, α) Reactions

Study reaction cross sections by measuring time-inverse reactions in inverse kinematics

Radioactive Ion Beams at ATLAS

Radioactive Ion Beams (RIBs) at ATLAS

- Result is cocktail beam of RIB and primary beam
- RF sweeper reduced background from stable beam component

Experimental Setup

- RIB produced via in-flight method enters target chamber
 - energy degraded by Au foils
 - impinges on 650 μ g/cm² CH₂ target
- α -particles detected in double-sided Si strip detector (DSSD) segmented in θ_{lab}
- Heavy reaction products separated from beam by Enge Split-Pole Spectrograph SPS):
 - SPS run in gas-filled mode
 - detected at focal plane by Parallel Grid Avalanche (PGAC) counter and Ionization Chamber (IC)

Results: ${}^{33}Cl(p, \alpha){}^{30}S$

- Coincidence detection between 30 S heavy recoils and α 's
- Yield normalized to beam current and target thickness
- Normalized yield corrected for efficiencies determined via Monte Carlo simulations
- Resulting cross sections up to a factor of four greater than NON-SMOKER calculations
 - theoretical calculations valid for these reactions?
 - experimental determination necessary

Results: ${}^{37}K(p,\alpha){}^{34}Ar$

- Similar setup to ³³Cl(*p*, *α*)³⁰S study
- SSB monitor added for third method of normalization
- Preliminary results show cross sections lower than NON-SMOKER calculations
- Publication to be submitted Summer 2014

Results: ${}^{29}P(p,\alpha){}^{26}Si$ and ${}^{25}Al(p,\alpha){}^{22}Mg$

- Similar setup to ${}^{33}Cl(p,\alpha){}^{30}S$ and ${}^{37}K(p,\alpha){}^{34}Ar$ studies
- Analysis in progress for both experimental runs

Future . . . Direct (α ,p) Studies with HELIOS

- HELIcal Orbit Spectrometer (HELIOS)
 - 2.85 T repurposed MRI magnet
 - allows improved inverse kinematics studies:
 - high geometrical efficiency
 - better resolution (alleviates kinematic compression)
 - unique particle ID via time-of-flight
- Upgrades to HELIOS for (α, p) studies:
 - cryogenic gas target
 - commissioned Spring 2013
 - high-rate ionization chamber
 - commissioned Spring 2013
 - new Si array
 - under construction
- ³⁰S beam development underway

Studying (α, p) reactions with ANASEN

- Array for Nuclear Astrophysics and Structure with Exotic Nuclei (ANASEN)
 - posters: PS1-A059 J. Blackmon; PS1-A056 G. Rogachev
- Extended active gas target/detector
 - Proportional Counter (PC) gas acts as target
 - PC plus Si detector coverage allow for event by event reconstruction
 - active gas target allows maximum efficiency with low intensity RIBs
- Successful runs with both stable and radioactive beams at Florida State University
 - ${}^{14}N(\alpha, p){}^{17}O$
 - ${}^{18}\text{Ne}(\alpha, p)^{21}\text{Na}$
- First experimental run with reaccelerated RIB from ReA3 at NSCL: ³⁷K(p,p) ³⁷K

Summary

- Time-inverse (p, α) measurements have been completed for all four candidate αp process waiting-point nuclei
 - ${}^{25}\text{Al}(p, \alpha)^{22}\text{Mg}$
 - ${}^{29}P(p, \alpha)^{26}Si$
 - ${}^{33}\text{Cl}(p, \alpha){}^{30}\text{S}$
 - 37 K(*p*, *a*)³⁴Ar
- Significant deviations from theoretical calculations have been found
- Next steps:
 - examining effects of new cross sections on XRBs
 - direct (α, p) measurements with devices such as HELIOS and ANASEN

Thank You!!

