Proton radius of ¹⁴Be from measurement of charge changing cross sections

S. Terashima¹, <u>I. Tanihata^{1,2}</u>, R. Kanungo³, A. Estradé^{3,4}, W. Horiuchi^{5,} F. Ameil⁴, J. Atkinson², Y. Ayyad⁶, D. Cortina-Gil⁶, I. Dillmann⁴, A. Evdokimov⁴, F. Farinon⁴, H. Geissel⁴, G. Guastalla⁴, R. Janik⁷, M. Kimura⁵, R. Knoebel⁴, J. Kurcewicz⁴, Y. A. Litviinov⁴, M. Marta⁴, M. Mostazo⁶, I. Muhka⁴, T. Neff⁴, C. Nociforo⁴, H.J. Ong², S. Pietri⁴, A. Prochazka⁴, R. Janik⁷, C. Scheidenberger⁴, B. Sitar⁷, P. Strmen⁷, Y. Suzuki^{8,9}, M. Takechi⁴, J.S. Tanaka², J. Vargas⁶, J. Winfield⁴, H. Weick⁴

¹ School of Physics and Nuclear Energy Engineering and IRCNPC, Beihang University, Beijing 100191, China

² RCNP, Osaka University, Ibaraki 567-0047, Japan

³ Saint Mary's University, Halifax, NS B3H 3C3, Canada
 ⁴ GSI Helmholtz Center, 64291 Darmstadt, Germany

⁵ Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
 ⁶ Universidad de Santiago de Compostela, Santiago de Compostela, Spain
 ⁷ Comenius University, Bratislava, Slovakia
 ⁸ Department of Physics, Niigata University, Niigata 950-2181, Japan
 ⁹ RIKEN Nishina Center, Wako 351-0198, Japan

RADII OF NUCLEON DISTRIBUTIONS IN NUCLEI (PROTON, NEUTRON, NUCLEON)

- They provide basic information on the structure of nuclei
- In particular the difference of proton and neutron radii are important in halo and neutron skin nuclei
 - Decoupling of protons and neutrons in nuclei
 - Movements of a core and a halo, correlation between halo neutrons, core modification, ...
 - **EOS** of the asymmetric nuclear matter

RECENT DEVELOPMENTS IN PROTON RADII OF LIGHT NUCLEI

A great progress has been made in determination of charge radii of He, Li, and Be isotopes by isotope-shift measurements.

⁶ He: LB. Wang et al., Phys. Rev. Letters 93 (2004) 142501.	@ANL
⁸ He: P. Mueller et al., Phys. Rev. Letters 99 (2007) 252501.	@GANIL with ANL group
^{6,8,9} Li: G. Ewald et al., Phys. Rev. Letters 93 (2004) 113002.	@ GSI
^{6,8,9,11} Li: R. Sánchez et al., Phys. Rev. Letters 96 (2006) 033002.	@TRIUMF with GSI group
^{7,9,10,11} Be: W. D. Nörtershäuser., Phys. Rev. Letters 102 (2009) 062503.	@GSI

- Development of atomic structure calculation up to three-electron system.
- G. W. F. Drake Nucl. Phys. A737c, 25 (2004), Z. C. Yan et al., Phys. Rev. Letters 100 (2008) 243002.

Proton radii measurements by charge changing cross sections (σ_{cc})

- B-F isotopes: Chulkov et al; Nucl. Phys A674 (2000) 330.
- ^{9,10,11}Be, ^{14,15,16}C, ^{16,17,18}O isotopes: Phys. Rev. Lett. 107 (2011) 032502.

Proton radii of Be isotopes except ¹⁴Be has been determined but ¹⁴Be (2-n halo nucleus) is not known!

σ_{cc} **MEASUREMENTS OF** ^{7,9,10,11,12,14}**B**

Experiment S395 setup (May 23rd to 31st).

 N_{inc} = No. of the incident nuclei N_{ncc} = No. of the out going nuclei without charge change

 $\gamma = N_{ncc}/N_{inc}$ with target $\gamma_0 = N_{0ncc}/N_{0inc}$ without target

$$\sigma_{cc} = \frac{1}{t} \ln \frac{N_{0ncc} / N_{0inc}}{N_{ncc} / N_{inc}} = \frac{1}{t} \ln \frac{\gamma_0}{\gamma}$$

NECESSARY COLLECTIONS FOR DISCUSSION OF PROTON RADII

- When ⁸Be is produced with only neutron removal, it is observed as charge changing because of the immediate decay of ⁸Be to 2α.
- This cross section has to be removed from the observed charge changing cross section before the radii discussion.

For ⁷Be, any removal of neutron makes the change of proton number because it is a proton drip line nucleus. Therefore σ_{cc} = σ_R and proton radii can not be determined from σ_{cc}.

EFFECTS OF 2A IN AE SPECTRA

■ 757 ±4 mb

DETERMINED Σ_{cc} FOR BE ISOTOPES

GLAUBER MODEL FOR \Sigma_I AND \Sigma_{cc}

Optical limit Calculation

$$\sigma_R = \iint \left[1 - T_R(\mathbf{b}) \right] d\mathbf{b}$$

 $T_R(\mathbf{b}) = \left| \exp[i\chi_R(\mathbf{b})] \right|^2$:Transmission function(probability not to have reaction)

t \

$$i\chi_{R}(\mathbf{b}) = \iint_{P} \iint_{T} \sum_{i,j} \left[\rho_{Pj}^{z}(\mathbf{s}) \rho_{Ti}^{z}(\mathbf{t}) \Gamma_{ji}(\mathbf{b} + \mathbf{s} - \mathbf{t}) \right] d\mathbf{s} d\mathbf{t}$$
(P.T): p-p, p-n, n-p, n-n

$$\rho_{Pi}^{z}(\mathbf{s}) = \int_{-\infty}^{\infty} \rho_{Pi} \left(\sqrt{\mathbf{s}^{2} + z^{2}} \right) dz$$
$$\Gamma_{ik}(\mathbf{b}) = \frac{1 - i\alpha_{ik}}{4\pi\beta_{ik}^{2}} \sigma_{ik} \exp\left(-\frac{\mathbf{b}^{2}}{2\beta_{ik}^{2}}\right)$$

b

S

$$\sigma_{cc} = \iint [1 - T_c(\mathbf{b})] d\mathbf{b}$$

$$T_c(\mathbf{b}) = \left| \exp[i\chi_c(\mathbf{b})] \right|^2$$

$$i\chi_c(\mathbf{b}) = \iint_P \iint_T \sum_i \left[\rho_{Pp}^z(\mathbf{s}) \rho_{Ti}^z(\mathbf{t}) \Gamma_{pi}(\mathbf{b} + \mathbf{s} - \mathbf{t}) \right] d\mathbf{s} d\mathbf{s}$$

(P,T): p-p, p-n, n-p, n-n

COMPARISON WITH MODELS

 σ_I can be reproduced by the Glauber model if we know the proton radii within 5 % discrepancies. All isotopes σ_I can be reproduced introducing one common factor ~1.05.

PROTON RADIUS OF ¹⁴BE

- The Glauber model provide the σ_{cc} with known proton radii.
- Assume harmonic oscillator density distribution as model density.
- Fit the observed σ_{cc} by adjusting the size parameter of the density distribution.

¹⁴BE PROTON RADIUS (RESULTS)

EFFECT OF NEUTRONS IN THE PROJECTILE

(P,T): p-p, p-n, n-p, n-n

 $\sigma_{cc} = \iint [1 - T_c(\mathbf{b})] d\mathbf{b}$ $T_p(\mathbf{b}) = T_c(\mathbf{b}) = |\exp[i\chi_c(\mathbf{b})]|^2$:Probability of protons are intact.

 $i\chi_{c}(\mathbf{b}) = \iint_{P} \iint_{T} \sum_{i} \left[\rho_{Pp}^{z}(\mathbf{s}) \rho_{Ti}^{z}(\mathbf{t}) \Gamma_{pi}(\mathbf{b} + \mathbf{s} - \mathbf{t}) \right] d\mathbf{s} d\mathbf{t}$

$$T_n(\mathbf{b}) = \left| \exp[i\chi_n(\mathbf{b})] \right|^2 \qquad i\chi_n(\mathbf{b}) = \iint_P \iint_T \sum_i \left[\mathcal{P}_{Pn}^z(\mathbf{s}) \rho_{Ti}^z(\mathbf{t}) \Gamma_{ni}(\mathbf{b} + \mathbf{s} - \mathbf{t}) \right] d\mathbf{s} d\mathbf{t}$$

 $T_I(\mathbf{b}) = T_p(\mathbf{b}) \cdot T_n(\mathbf{b})$

 $T_{no}(\mathbf{b}) = [1 - T_n(\mathbf{b})] \cdot T_p(\mathbf{b})$: Probability hitting projectile neutron(s) without hitting proton(s)

 $1 - T_I(\mathbf{b}) = \left[1 - T_p(\mathbf{b})\right] + \left[1 - T_n(\mathbf{b})\right] \cdot T_p(\mathbf{b})$

Proton removal

$$\sigma_{cc}^{improved} = \iint \left[1 - T_p(\mathbf{b}) \right] + \alpha \left[1 - T_n(\mathbf{b}) \right] \cdot T_p(\mathbf{b}) d\mathbf{b}$$

ALPHA DOES NOT CHANGE FOR DIFFERENT ISOTOPES

Best fitting value of neutro effect alpha in Be isotopes and 12C (plotted at A=12.5

SUMMARY

- Proton radius of ¹⁴Be has been determined from measurement of charge changing cross sections at 900A MeV
- With a Glauber model analysis applying the scaling of the cross section, <rp²>^{1/2} = 2.41±0.04 fm has been obtained.
- With another Glauber model that include a influence of neutron scatterings, <<rp>2>1/2 = 2.32±0.14 has been obtained.