Spectroscopy of Single－Particle States in Oxygen Isotopes via（ $\stackrel{\mathrm{p}}{2}, 2 p$ ）Reaction

Shoichiro KAWASE

Center for Nuclear Study，the University of Tokyo

東京大学
THE UNIVERSITY OF TOKYO
東京大学 大学院
理学系研究科•理学部
SCHOOL OF SCIENCE，THE UNIVERSITY OF TOKYO

Center for Nuclear Study
S．Kawase（Center for Nuclear Study，U Tokyo）＠ARIS 20I4，U Tokyo，June 2014

$(\bar{p}, 2 p)$ reaction as a spectroscopic tool

Simple reaction mechanism

Spin-parity determinability

a powerful probe for the study of single particle/hole state

Spin-orbit splitting

For the understanding of the nuclear structure, it is necessary to know how the spin-orbit splitting changes with Z, N.

J. P. Schiffer et al. Phys. Rev. Lett., 92, 162501 (2004).

Goal of this study:
Determine $\frac{1 \mathrm{p} \text { proton spin-orbit splittings }}{\text { in oxygen isotopes }}$
as a function of neutron number
S. Kawase (Center for Nuclear Study, U Tokyo) @ ARIS 20I4, U Tokyo, June 2014

Previous experiment: ${ }^{18} \mathrm{O}(p, 2 p)$

Facility
Reaction $(\vec{p}, 2 p)$ in normal kinematics
Beam

Target

Effectiveness of ($\vec{p}, 2 p$) was clearly demonstrated

SHARAQ04 experiment: ${ }^{14,22,24} \mathrm{O}(p, 2 p)$

Facility	RIKEN RIBF
Reaction	$(\vec{p}, 2 p)$ in inverse kinematics
Beam	${ }^{14} \mathrm{O},{ }^{22} \mathrm{O},{ }^{24} \mathrm{O} @ \sim 250 \mathrm{MeV} / \mathrm{u}$
Target	Polarized proton target $\sim 100 \mathrm{mg} / \mathrm{cm}^{2}$
Plastic	Recoil MWDC

The first $(p, 2 p)$ reaction measurement with polarized target!

SHARAQ04 Setup

Reaction Identification for ${ }^{14} \mathrm{O}$ run

${ }^{13} \mathrm{~N}$ Excitation Energy Spectra

Ground and excited states can be distinguished by choosing residual nuclei.

Cross section

Assume ...

- smooth background distribution
- the same peak width for every state
- excited states mainly consists of 3/2components and includes 2 known states
- 3.5 MeV (3/2-)
- 15 MeV (3/2-) (IAS of ${ }^{13} \mathrm{O}$ g.s.)
cf.) ${ }^{14} \mathrm{C}(\mathrm{p}, \mathrm{d}){ }^{13} \mathrm{C}$: M.Yasue et al., Nucl.Phys. A509, 141 (1990)

state	counts	$\sigma_{\text {exp }}$
g.s.	$443(25)$	$251(14)$
3.5 MeV	$576(38)$	$326(22)$
15 MeV	$111(31)$	$63(18)$

The strength of 15 MeV state is unignorable

Spectroscopic factor

$$
C^{2} S:=\frac{\sigma_{\exp }}{\sigma_{\mathrm{DWIA}}}
$$

- $\sigma_{\text {DWIA }}$ was calculated by using DWIA calculation code THREEDEE
N. S. Chant et al., Phys. Rev. C 15, 57 (1977).
- optical potential: Energy-dependent atomic-mass dependent global Dirac potential
E. D. Cooper et al., Phys. Rev. C 47, 297 (1993).
- NN scattering amplitude by Arndt
R. A. Arndt et al., Phys. Rev. D 35, 128 (1987).

state	$\sigma_{\exp }(\mu \mathrm{b})$	$\sigma_{\text {DWIA }}(\mu \mathrm{b})$	$C^{2} S$	$C^{2} S /$ Shell Limit	
g.s. (1/2-)	$251(14)$	166	$1.51(8)$	$0.76(4)$	
3.5 MeV (3/2-)	$326(22)$	161	$2.02(14)$	$0.51(4)$	
15 MeV (3/2-)	$63(18)$	97.1	$0.65(19)$	$0.14(5)$	
Consistent with					
Cuenching effect					

Spin-orbit splitting

Effective Single particle energy (ESPE)
$\Rightarrow C^{2} S$-weighted mean of excitation energy
spin-orbit splitting $=\operatorname{ESPE}\left(3 / 2^{-}\right)-\operatorname{ESPE}\left(1 / 2^{-}\right)$ $=6.3(6) \mathrm{MeV}$

- sd-shell mixture in ${ }^{14} \mathrm{O}$ ground state

Untested Factors

- background distribution
- optical potential in cross section calc.

Oxygen isotopes

Summary \& Outlook

- Goal: determine the proton 1 p spin-orbit splitting in oxygen isotopes
- $(\vec{p}, 2 p)$ reaction is a powerful tool to the study of single-particle orbit
- $\mathrm{A}(\vec{p}, 2 p)$ reaction experiment with ${ }^{14,22,24} \mathrm{O}$ have been carried out
- Reasonable amount of spectroscopic factors for ground and excited states of ${ }^{13} \mathrm{~N}$ were obtained
- 1 p proton spin-orbit splitting of ${ }^{14} \mathrm{O}, 6.2(6) \mathrm{MeV}$ was obtained
- Further analysis is needed ...
- Improvement of resolution
- Momentum distribution analysis -> sd mixing ratio
- Spin polarization observable
-> spin assignment
- Calculation with more realistic optical potential

Collaborators

CNS, U Tokyo S. Shimoura, K. Yako, S. Ota, S. Michimasa, H. Tokieda, H. Miya, T.L. Tang, K. Kisamori, M. Takaki, Y. Kubota, C.S. Lee, R. Yokoyama, T. Fujii, M. Kobayashi

RIKEN Nishina Center
T. Uesaka, M. Sasano, J. Zenihiro, H. Matsubara, M. Dozono, H. Sakai, T. Kubo, K. Yoshida, N. Inabe, Y. Yanagisawa, H. Takeda, K. Kusaka, N. Fukuda, D. Kameda, H. Suzuki

> Toho U.

Tohoku U.
Kyushu U.
U. Miyazaki

Kyungpook Nat'I U., Korea
IPN Orsay, France
CEA Saclay, France
ORNL, USA
ICN-UNAM, Mexico
T. Kawahara
T. Wakui
T. Noro, T. Wakasa, S. Sakaguchi, J. Yasuda, T. Fukunaga
Y. Maeda
W. Kim, S.H. Hwang, S.S. Stepanyan
D. Beaumel
A. Obertelli
A. Galindo-Uribarri
E. Padilla-Rodal

Thank you for your attention!

