Spectroscopy of Single-Particle States in Oxygen Isotopes via (\overline{p} , 2p) Reaction

Shoichiro KAWASE

Center for Nuclear Study, the University of Tokyo

CENTER for Nuclear Study

$(\vec{p}, 2p)$ reaction as a spectroscopic tool

a powerful probe for the study of single particle/hole state

Spin-orbit splitting

For the understanding of the nuclear structure, it is necessary to know how the spin-orbit splitting changes with Z, N.

J. P. Schiffer *et al.* Phys. Rev. Lett., **92**, 162501 (2004).

Goal of this study:

Determine <u>1p proton spin-orbit splittings</u> in oxygen isotopes as a function of neutron number

Previous experiment: ¹⁸O(*p*,2*p*)

SHARAQ04 experiment: ^{14,22,24}O(p,2p)

Facility	RIKEN RIBF	Beam line MWDC	Polarized Proton
Reaction	$(\vec{p},2p)$ in inverse kinematics		Recoil MWDC
Beam	¹⁴ O, ²² O, ²⁴ O @ ~250 MeV/u		
Target	Polarized proton target ~100 mg/cm ²		p
Recoil MWDC Plastic	Scattering Angle Separation energy (Excitation energy)	p / Q	Plastic Scinti.

The first (*p*,2*p*) reaction measurement with polarized target!

S. Kawase (Center for Nuclear Study, U Tokyo) @ ARIS 2014, U Tokyo, June 2014

Plastic

Scinti.

D

SHARAQ04 Setup

Reaction Identification for ¹⁴O run

¹³N Excitation Energy Spectra

Ground and **excited** states can be distinguished by choosing residual nuclei.

Background is coming from...

- ${}^{14}O({}^{12}C,2p)$ in the target
- surrounding materials

Cross section

Assume ...

- smooth background distribution
- the same peak width for every state
- excited states mainly consists of 3/2components and includes 2 known states
 - 3.5 MeV (3/2-)
 - 15 MeV (3/2-) (IAS of ¹³O g.s.)

cf.) ¹⁴C(p,d)¹³C: M.Yasue et al., Nucl.Phys. A509, 141 (1990) 100

state	counts	σ_{exp}	
g.s.	443(25)	251(14)	
3.5 MeV	576(38)	326(22)	
15 MeV	111(31)	63(18)	

Spectroscopic factor

$$C^2 S := \frac{\sigma_{\exp}}{\sigma_{DWIA}}$$

- σ_{DWIA} was calculated by using DWIA calculation code THREEDEE N. S. Chant *et al.*, Phys. Rev. C 15, 57 (1977).
- optical potential: Energy-dependent atomic-mass dependent global Dirac potential E. D. Cooper *et al.*, Phys. Rev. C **47**, 297 (1993).
- NN scattering amplitude by Arndt

R. A. Arndt et al., Phys. Rev. D 35, 128 (1987).

state	σ_{exp} (µb)	σ _{DWIA} (μb)	C ² S	C ² S / Shell Limit	
g.s. (1/2-)	251(14)	166	1.51(8)	0.76(4)	
3.5 MeV (3/2-)	326(22)	161	2.02(14)	0.51(4)	Consistent with quenching effect
15 MeV (3/2-)	63(18)	97.1	0.65(19)	0.14(5)	

Spin-orbit splitting

Effective Single particle energy (ESPE)

 \Rightarrow *C*²*S*-weighted mean of excitation energy

spin-orbit splitting = ESPE(3/2⁻) - ESPE(1/2⁻) = **6.3(6) MeV**

• sd-shell mixture in ¹⁴O ground state

Untested Factors

- background distribution
- optical potential in cross section calc.

Summary & Outlook

- Goal: determine the proton 1p spin-orbit splitting in oxygen isotopes
- $(\vec{p}, 2p)$ reaction is a powerful tool to the study of single-particle orbit
- A $(\vec{p}, 2p)$ reaction experiment with ^{14,22,24}O have been carried out
 - Reasonable amount of spectroscopic factors for ground and excited states of ¹³N were obtained
 - 1p proton spin-orbit splitting of ¹⁴O, 6.2(6) MeV was obtained
- Further analysis is needed ...
 - Improvement of resolution
 - Momentum distribution analysis -> sd mixing ratio
 - Spin polarization observable -> spin assignment
 - Calculation with more realistic optical potential

Collaborators

CNS, U Tokyo	S. Shimoura, K. Yako, S. Ota, S. Michimasa, H. Tokieda, H. Miya, T.L. Tang, K. Kisamori, M. Takaki, Y. Kubota, C.S. Lee, R. Yokoyama, T. Fujii, M. Kobayashi		
RIKEN Nishina Center	<u>T. Uesaka</u> , M. Sasano, J. Zenihiro, H. Matsubara, M. Dozono, H. Sakai, T. Kubo, K. Yoshida, N. Inabe, Y. Yanagisawa, H. Takeda, K. Kusaka, N. Fukuda, D. Kameda, H. Suzuki		
Toho U.	T. Kawahara		
Tohoku U.	T. Wakui		
Kyushu U.	T. Noro, T. Wakasa, S. Sakaguchi, J. Yasuda, T. Fukunaga		
U. Miyazaki	Y. Maeda		
Kyungpook Nat'l U., Korea	W. Kim, S.H. Hwang, S.S. Stepanyan		
IPN Orsay, France	D. Beaumel		
CEA Saclay, France	A. Obertelli		
ORNL, USA	A. Galindo-Uribarri		
ICN-UNAM, Mexico	E. Padilla-Rodal		

Thank you for your attention!