Two-nucleon correlations in the decays of unbound nuclei beyond the drip lines

Kouichi Hagino (Tohoku Univ.) Hiroyuki Sagawa (Univ. of Aizu)

- 1. Di-neutron correlations in neutron-rich nuclei
- 2. Two-neutron decays of ²⁶O: three-body model
 - decay energy spectrum
 - angular distribution of two neutrons
 - decay width
- 3. Summary

Di-neutron correlations in neutron-rich nuclei

Strong di-neutron correlations in neutron-rich nuclei

- ✓ Borromean nuclei (3body calc.) Bertsch-Esbensen ('91) Zhukov et al. ('93) Hagino-Sagawa ('05) Kikuchi-Kato-Myo ('10)
- ✓ Heavier nuclei (HFB calc.) Matsuo et al. ('05)
 Pillet-Sandulescu-Schuck ('07)

K.H. and H. Sagawa, PRC72('05)044321

Di-neutron correlations in neutron-rich nuclei

Strong di-neutron correlations in neutron-rich nuclei

- ✓ Borromean nuclei (3body calc.) Bertsch-Esbensen ('91) Zhukov et al. ('93) Hagino-Sagawa ('05) Kikuchi-Kato-Myo ('10)
- ✓ Heavier nuclei (HFB calc.) Matsuo et al. ('05) Pillet-Sandulescu-Schuck ('07)

How to probe it?

- Coulomb breakup T. Nakamura et al. cluster sum rule
 - (mean value of θ_{nn})
- > pair transfer reactions
- two-proton decays Coulomb 3-body problem
- <u>two-neutron decays</u>
 3-body resonance due to a centrifugal barrier
 MoNA (¹⁶Be, ¹³Li, ²⁶O)
 SAMURAI (²⁶O)
 GSI (²⁶O)

Two-neutron emission decays of ²⁶O (MoNA@MSU)

E. Lunderberg et al., PRL108 ('12) 142503Z. Kohley et al., PRL 110 ('13)152501

 27 F (82 MeV/u) + 9 Be $\rightarrow ^{26}$ O $\rightarrow ^{24}$ O + n + n

C. Caesar et al., PRC88 ('13) 034313 (GSI exp.)

3-body model analysis

cf. Expt. : ${}^{27}F(82 \text{ MeV/u}) + {}^{9}Be \rightarrow {}^{26}O \rightarrow {}^{24}O + n + n$

$$M_{fi} = \langle (j_1 j_2)^{J=0} | (1 - vG_0 + vG_0 vG_0 - \cdots) | \Psi_i \rangle$$

= $\langle (j_1 j_2)^{J=0} | (1 + vG_0)^{-1} | \Psi_i \rangle$

 \geq ²⁴O + n potential

Woods-Saxon potential C.R. Hoffman et al., PRL100('08)152502 $e_{2s1/2} = -4.09 (13) \text{ MeV},$ $e_{1d3/2} = +770^{+20}$ keV, $\Gamma_{1d3/2} = 172(30)$ keV $>^{25}$ F + n potential $(^{24}O + n)$ potential $+ \delta V_{1s}$ pn tensor interaction T. Otsuka et al., PRL95('05)232502 $e_{1d3/2}$ (²⁶F) = - 0.811 MeV <u>In interaction (density-dependent zero-range interaction)</u> $\leftarrow E_{exp} (^{27}F) = -2.80(18) \text{ MeV}$

2n emission decay of ²⁶O ← three-body model with density-dependent zero-range interaction

✓ Decay energy spectrum: strong low-energy peak

 \checkmark Energy distribution of 2 neutrons: three-body resonance

✓ Angular distributions: enhanced back-to-back emission

□open problems

- ✓ Analyses for ¹⁶Be, ¹³Li (especially angular distributions)
- ✓ Decay width?
- ✓ similarities and differences in 2n- and 2p- decays