

D.J. Hinde Department of Nuclear Physics Research School of Physics and Engineering The Australian National University

Accelerators in Australia

ANSTO Sydney \$25M 10MV tandem Materials, AMS (Research Reactor OPAL)

Heavy Ion Accel. Facility 15MV tandem+Linac Canberra \$50M Nucl. Phys, AMS, Materials

 Australian Synchrotron Melbourne \$200M
 Electron synchrotron 3rd gen. light source

Heavy Ion Accelerator Facility, ANU, Canberra

Canberra

- Capital city of Australia
- Named in 1913, in the middle of nowhere
- Population now 350,000

Heavy Ion Accelerator Facility, ANU, Canberra

NEC SNICS negative ion sources

Multi-sample SNICS (AMS) Gas SNICS (NP) p,d,Li,Be,B,C,O,F,Na,Mg,Al,Si,P, S,Cl,Ca,Ti,V,Fe,Ni,Cu,Zn,Ge..Au,Th,U Slow chopper to 1s separation

Second stripper Foil 1/3 from terminal

National Engineering Excellence Award 2007 Pb re-plated Cu quarter-wave resonato 330 W LHe refrigerator LHe distribution system 6 MeV/q energy gain

Linac overview

Pb re-plated Cu quarter-wave resonators 330 W LHe refrigerator LHe distribution system 6 MeV/q energy gain

Linac runs ~once per year

14UD provides most experimental requirements

Linac runs ~once per year

14UD provides most experimental requirements

Heavy Ion Accelerator Facility, ANU, Canberra

Current Department of Nuclear Physics - operates HIAF

- 8 continuing research staff
 - 2 AMS
 - 2 Nuclear reactions
 - 4 Nuclear structure
- 12/09: total researchers in department
- 3 AMS
- 5 Nuclear reactions
- 4 Nuclear structure
- ~ 20 research students
- ~ 40 accelerator users outside department (NP, AMS, Materials)
- 3 accelerator and computing professional staff
- 7 technical staff + 1 administration staff
- Central mechanical and electronic workshops
- Currently no direct funds for facility (user charge)

Beams, energies used in experiments

Beam	V _B on Pb (MeV)	14UD energy (MeV, MeV/A)	Linac energy (MeV, MeV/A)
⁹ Be	40	70, 7.8	-
16, 17 , 18 0	80	133, 8.4	165, 10.3
32,34, <mark>36</mark> S	166	210, 6.6	-
^{40,44} Ca	200	230, 5.8	325, 8.1
^{46,48,50} Ti	230	245, 5.1	300, 6.3
^{58,64Ni}	290	280, 4.8	340, 5.3
¹⁹⁷ Au	(ERDA)	200, 1.0	-

Near-barrier (E/A~5 MeV) - reactions, spectroscopy, (AMS, Materials) 14UD provides most experimental requirements

Future Developments (2010-2013)

- Australian Government response to Global Financial Crisis:
- A\$7.6M given (not taken away!) over 4 years for upgrades

Accelerator enhancements

- Beam pulsing update and upgrade 200 ps pulses RTB
- Linac pilot project to replace Pb plating by Nb 12 MV/q
- Two to three new beamlines, target stations
- Second dedicated s/c solenoid beamline (RIB, spectroscopy)
- Upgrade of AMS capability automation
- Migrate accelerator computer control and D/A from VAX
- Modern pumps and magnet power supplies

Infrastructure Enhancement

Facility is part of University – teaching commitments

- New undergraduate teaching area
- New detector development labs
- Renewal of accelerator control room

Direct facility funding

- Support international visitors and accelerator users
- Take pressure off research grants funding facility
- Play a stronger role in region
- Accelerator is reliable, performs well, unique instrumentation

- Accelerator Mass Spectrometry (AMS)
- Materials modification and characterization (external users)
- Nuclear Structure
- Nuclear Reaction Dynamics

Accelerator Mass Spectrometry

Equipment

- Sample preparation/chemistry laboratory
- Multi-sample SNICS source
- Velocity Filters + Gas ionization DE-E detectors
- Gas-filled magnet (ENGE split pole)

Accelerator Mass Spectrometry

Equipment

- Sample preparation/chemistry laboratory
- Multi-sample SNICS source
- Velocity Filters + Gas ionization DE-E detectors
- Gas-filled magnet (ENGE split pole)

¹⁰Be, ¹⁴C, ²⁷AI, ³⁶CI, ⁵⁵Mn, ²³⁹Pu,...

Materials modification and characterization

Equipment

- Beam rastering for material implantation/modification
- Large gas ionization ΔE -E detector for ERDA
- PAC array for γ-ray decay following implantation

Gammasphere ANL

- **CAESAR** Ge γ -ray array: level schemes and lifetimes
- Superconducting electron spectrometer: conversion coefficients
- \checkmark γ -ray angular correlation array, cryo-cooled target: magnetic moments

Super-e

SOLENO-GAM - γ-ray+electron module behind SOLITAIRE

Nuclear Structure

Equipment

Equipment

• **CUBE -** MWPC detectors for fission: heavy element formation

Nuclear Reaction Dynamics

Equipment

- **CUBE** MWPC detectors for fission $\Delta \theta = 70^{\circ}$, $\Delta \phi = 90^{\circ}$:heavy elements
- **SOLITAIRE** superconducting 6.5 T solenoid: $\Delta \theta = 9.5^{\circ} \rightarrow 86$ msr
- Heavy ion fusion: fusion barrier distributions, sub-barrier fusion
- Radioactive beam production: ⁶He
- Nuclear structure γ-ray spectroscopy: short-lived states

SOLITAIRE

SOLITAIRE

SOLITAIRE Nuclear Reaction Dynamics

M.D. Rodriguez et al., NIM A (2010) in press

SOLITAIRE Nuclear Reaction Dynamics

M.D. Rodriguez et al., NIM A (2010) in press

SOLITAIRE

RIB

⁶He

NUCLEAR STRUCTURE SOLENO-GAM

Nuclear Reaction Dynamics

Equipment

- **CUBE** MWPC detectors for fission $\Delta \theta = 70^{\circ}$, $\Delta \phi = 90^{\circ}$:heavy elements
- **SOLITAIRE** superconducting 6.5 T solenoid: 86 msr
- Heavy ion fusion: fusion barrier distributions
- Radioactive beam production: ⁶He
- Nuclear structure γ -rays, electrons: short-lived isomers
- **BaBrA** Back-angle 512 pixel Si array (2.6 sr): sub-barrier breakup
- 2m diameter scattering chamber: velocity filter for fusion
- **UK CHARISSA MEGHA** detectors: α-cluster states in light nuclei

Nuclear Reaction Dynamics

512 pixel Si array

MEGHA (UK)

Some of our research programs

Nuclear Reaction Dynamics

- Fusion barrier distribution
- Quantum decoherence in nuclear collisions
- Breakup of weakly-bound nuclei
- Heavy element formation dynamics

Quantum decoherence in nuclear collisions

Quantum decoherence in nuclear collisions

Where is the transition? It is gradual or sharp? How does it affect reactions?

Example: Electron entanglement with a surface

Double-slit type experiment with single electrons

Example: Electron entanglement with a surface

- Double-slit type experiment with single electrons
- Electron passing above disturbs electrons in semiconductor
- "which way" information → destroys spatial coherence

CC model fails to simultaneously describe above and below barrier fusion – probes same radial separation Suppression of quantum tunnelling - nucleonic d.o.f.

M. Dasgupta et al., PRL 82 (1999) 1395
D.J. Hinde et al., PRL 89 (2002) 272701
D.J. Hinde et al., Nature 431 (2004) 748
A. Diaz-Torres et al., PRL 98 (2007) 152701

Breakup of Weakly-bound Nuclei

Breakup of Weakly-bound Nuclei

T

Quasi-fission timescale

Situation in Australia

- Good infrastructure for near-barrier nucl phys, AMS
- Need for specific facility funding to play role of national facility