テラスケール物理 LHC実験の現状と最新成果

- 1.LHC加速器の現状と今後
- 2. SM 過程を用いた検出器 performance
- 3. ヒッグス粒子 そろそろ?
- 4. 超対称性と暗黒物質 まだまだ?
- 5. 纏め

1.LHC加速器の現状と将来

- ・14 TeV の陽子・陽子衝突型加速器
 (今は、接合部の不良で7TeV)
- ・円周27km (1232台diploe 超伝導磁石)
- ・700KIの液体He(1.9K) 最大級の冷い物
- ・建設に14年
- ・総建設費は約5000億円(半分磁石)

Luminosity is essence for Hadron collider

Bunch Structure of beam

LHC schedule

Year ending

2012 ECM=8 TeV L~15 fb⁻¹ Higgs year + New phys. 2013 Shut down(18months) 2014 ECM=13-14TeV restart 2015,16 L=50-100fb⁻¹ New Physics year 2018 Injector update L>100 fb⁻¹ /year Precision measurements of Higgs & SUSY

2021-LH-LHC 10³⁵ cm⁻² s⁻¹ L~ 1ab⁻¹/year ヒッグスのself coupling 2030-HE-LHC ECM ~33 TeV 重いSUSYなど 物理結果依存

高いルミノシティーの代償:パイルアップ

大きなDetector: バランス 優先のパフォーマンス とにかく大きいδP/P~P/(BL²) Lで勝負
 Accordion Shape of 液体 Ar カロリメータ (放射線耐性、奥行き情報、Fine granuarity)
 Large air-core toroidal magnet ミューオンシステム (トロイド磁石)

・小さくコンハクト H=15m L=22m (about half of ATL W=12,500ton (twice of ATLAS) 鉄のかたまり return yoke (密度3.2g/cc)

• 一点豪華主義

 PbWO₄ シンチ 電子・γに賭けた(Higgs) (高いエネルギー分解能、奥行き情報無し)
 •4T(強力) ソレノイド磁石(小さいのでBで勝負) ハドロンの外側:(薄いハドロンカロリメータ)

	ATLAS	CMS
特徴	アコーディオン型L.Ar トロイド磁石ミューオン バランスと細かさ	PbWO4 EM分解能 4Tソレノイド
飛跡検出器	B=2T Lで勝負 連続飛跡可能 (kink, disappear)	B=4T Bで勝負 半導体不連続
電磁カロリ	LAr+Pb 10%/SQRT(E) 細かな+縦方向	シンチレーター 3%/SQRT(E) 細かく読み出せない
ハドロンカロリ	厚い鉄 + シンチレーター 50%/SQRT(E)	薄い真鍮 + シンチレーター 100%/SQRT(E)
ミューン	空芯トロイド multiple-scatter が少ない low PT もOK 磁場が複雑	ソレノイドのリターンヨーク 鉄 散乱が大きい 磁場が強く安定:前方は苦手
Trigger	3 段構成 Hard + Local Soft + Full Reconst	2段構成 Hard + Full Reconst
つよみ	長生きもの ジェットが強い B-physics	e/y もの simple なんでcalibrationが楽

Number of reconstructed vertices

CMSの 電磁カロリメーター Z->ee

中性子のrad. damage で 透明度が変動する。 しかも、%のオーダーで 単調減少ではなく、beam 休止中にもどったり結構複雑 (中性子に長い間あてるテスト してなかった。)

レーザーで追尾して補正 o~1GeV 1%までつめた。

Barrel側だけ補正した Endcap側はまだ。(rad. 多い)

Hart of CMSはまだ活かしきれ いない

highest 2 jet mass

Standard Model 過程の測定断面積を予言比較

よくあっている。検出器の理解もだいぶ進んできている。

3. ヒッグス探索の最新結果

2008年ノーベル賞 南部先生 「自発的対称性の破れ」

質量って?

慣性質量~重力質量 (弱い等価原理)

特殊相対論的な見地: 質量 があると、光速より遅くなる。 光速で運動する系から見ると、

 q_R

真空がΦを持っている L-Rが絶えず交代しながら伝搬:

真空がL-Rの量子数の違いを吸収:

 q_L

「真空は空ではない」

非常に

豊かな構造をもっている

 $f_q \phi \overline{q}_L q_R$

(1)真空に潜む場(従来入れ物が極めて重要な役割を果たす)(2)質量を与える役割(二つの別の機構)

association production with top/b

崩壊分岐比

 $\sigma * Br$

GF(H-> $\gamma\gamma$, WW(lvlv), VBF(tautau), WH(bb) (M(H)~120 GeV) GF (H \rightarrow WW(lvlv), WW(lvqq),ZZ(4l), ZZ(llqq)) (M(H)>130GeV)

 $\sigma * Br \sim 0.01-1 pb$

Production σ of the SM background processes

Mh<120GeV</th> $H \rightarrow \gamma \gamma$ is sensitiveMh=120-125GeV $H \rightarrow WW, \gamma \gamma, ZZ \rightarrow 4$ leptonMh=125-130GeV $H \rightarrow WW, ZZ \rightarrow 4$ l, $\gamma \gamma$ Mh>135GeV $H \rightarrow WW, ZZ$

不変質量分布を出してみる

[B] $H \rightarrow ZZ \rightarrow 4$ lepton

Good resolution of Lepton(e.mu) (ΔM₄₁~ 3GeV) Small BG (Almost BG free Mh<180GeV) -> Gold-plated But Statistic is limited, since Br(Z->ee,mumu) is small

 $M_{4\mu} = 201 \text{ GeV}$ 43 GeV 26 GeV Рт PT 20 GeV 48 GeŴ

ー方 Zは on-shell もうー方が off-shell |Mll-Mz| < 15 GeV Mll>15GeV

注意しなければならない、少数統計の怖さ 「どこでも効果」(Looking Elsewhere effect)

LEE(Looking Elsewhere Effect)「どこでも効果」

少数統計の際の計算や、複数の解析で事象超過が見えた時、それをcombineする時に注意が必要

例として誕生日を考えます。1年365日生まれる確率は一定だとします。二人の誕生日 がたまたま1月1日で一致する確率は、(1/365)*(1/365)~10⁻⁶となり、5σ近い非常に希 なことになります。しかし、どこでもいいから一致する確率は 365*(1/365)*(1/365)=1/365 ~ 0.3%(1000回に3回)と結構大きな値になります。どこ日でもいいが、たまたま一致して、 この一致した日が1月1日の可能性もあります。このように「どこでも良い」が、たまたま 一致する効果をLEEといいます。

(「どの日でもいい」が の範囲が鍵: これを365日まで拡げると、0.3% 1ヶ月 1月の中で一致する 0.03% 1日 1/1まで狭めると、 10⁻⁶ で 確率は範囲に依存する)

Higgs ZZ-> 4Iにもどると 125GeV(local)のBGがふらついて、たまたま3発観測される確率は 2.1o(1.8%) 115-146GeV(夏までのexcludeされてない領域)の全体(global)でたまたま3発 同じ所に観測される確率は ~30%

観測されるジェットの数でタイプを3つに分ける

- 0 jet analysis バックグラウンド WW
- 1jet(with b-jet veto) バックグラウンド tt, WW
- 2jet(Forward jet for VBF) バックグラウンド tt

ΔΦ(II) Azimuthal angle between dilepton

M_T(Transverse mass)

Higgs Spin0

ニュートリノが2発逃げているので 質量が再構成出来ない

 $M_T^2 = (E_T^{II} + E_T^{missing})^2 - (P_T^{II} + P_T^{missing})^2$

Signal $M_{\tau} < M_{h}$ ($M_{\tau}=M_{h} P_{z}(Higgs)=0の時)$

Higgs spin 0 Wのスピンは反対向き Wのleptonic decay 100% Parity破っている leptonは同じ向きにでやすい

夏までの結果(mETがあるので、なかなか難しい解析)

Events / 10 GeV
CMS: Multivariate analysis

ΔR(II)とMT分布を使って、BG, Signal それぞれ"らしさ"を計算して出す

OF emuの組み合わせ SF ee, mumuの組み合わせ(Zが寄与する)

主に1 jet側に excessがみられる。 0 jet側はBG consistent

ATLAS combination

CMS combination

Exclude (95% CL)

119, 124 GeV 2.6σ (0.5%)

110-145GeV

どこでも効果 1.9 σ

127 <m_н < 600 GeV

115-127GeVの領域に 絞りこんだ

Higgsだと思ってfit

ATLAS 3.6σ(2.5σ LEE)CMS 2.5-2.6σ(1.9σ LEE)

ATLASは126GeV中心 CMSは115-125GeV のSM Higgsとconsistentな 分布

実験からの制限:(輻射補正からの予言)

LEP実験でZ/Wを0.1%の高い精度で研究 一次の補正が1%弱程度(αEM)なので,直接見えない粒子、top,higgsの 効果が見える 6

m_{Limit} = 161 GeV

125GeVだと思うと

(1)標準模型でHiggsの質量は不安定 すぐに発散する。 何か別の機構 O(10) * 125GeV ~ TeVにあることの重要な示唆 階層性問題

(2) SUSYだとすると、いろいろ

Minimal model

A ~ V6 mstop stop mixingが大きくないと かなりつらくなる

Aが小さいMinimal model 10TeV order のSUSUY mass になり、DM, muon g-2との整合性

NaïveなGMSUSYはたぶん駄目

おまけがあるほうが自然 または Aがfull mixingになっている。

4. SUSY 探索と暗黒物質

(1)はじめにトポロジーのイントロ
(2)代表的な探索結果と2012年の成果
(3)CMSSM base の limitと暗黒物質
(4)可能な方向性

LHCでのSUSY探索:期待されるトポロジー

Gluino/squarkがはじめに出来て, カスケード崩壊

Event topologies of SUSY

No Lepton モード

high PT >= 4 Jets & Large mET & mET は jetの方向でない

Neutrino from W/Z もけっこう高いPT まで行く mETだけではだめ Scalar sum of Jet activity(HT) CMSは HT ATLASは Meff= mET+ Σ PT (jet)

Meff >1000GeV (mET/Meff>0.25 mET>250GeV)

Data 40 events

BG 33.9+-2.9+-6.2 (Z 16 W 13 t 4)

3 candidates in high Meff region !!!

Candidate event (Hardest)

Run=183021 #66383304

Meff(4j) = 1810 GeV MET = 460 GeV phi=1.8

4 high PT (>150GeV) Jets pT=528 GeV eta=0.58 phi=-1.45 pT=418 GeV eta=0.83 phi=-0.19 pT=233 GeV eta=-0.91 phi=2.54 pT=171 GeV eta=-0.47 phi=-3.11 pT=42 GeV eta=0.47 phi=1.52

good candidate

Meff ~ 1.5 * M(squark, gluino)

If it is Sugra-like candidate gluino, squark ~ 1.3-1.5TeV

Candidate events

Run=183391 #61816156

Meff(4j) = 1453 GeV MET = 317 GeV phi=-0.34 Jets pT=654 GeV eta=-0.07 phi=2.64 pT=305 GeV eta=-0.24 phi=-0.74 pT=70 GeV eta=-0.10 phi=0.71 pT=64 GeV eta=-1.44 phi=2.41 pT=51 GeV eta=-1.18 phi=-1.48

Electron pT=42.8GeV eta=-1.4 phi=2.4

Nvtx = 4 with 103,19,10,4 tracks

W+ jets とも矛盾なし

CMSSMで NaïveなGUTを仮定して gluino/squark productionへ制限

CMS has obtained the similar results. No excess was found and gluino ~ 1.2 TeV, squark ~ 1.1 TeV are obtained.

CMS Preliminary

この結果の適用限界? モデル依存性

いろんな分布は、Modelにそんなに依存しない。

一番効くのは、ΔM(colored とLSP) ΔM (coloured vs LSP)=400GeV (@ 14TeV)

これがLHCでクルーシャル ΔM < 300GeV (@7TeV)</p>

No SUSY found @ LHC (1) heavy colored (2) degenerate (3) NoSUSY @ TeV scale.

Dark Matter (1)

Higgsino/Wino DM

Higgsino Dark matter case: In mSugra Higgsino mass (μ) is calculated &
|μ| ~ m1/2 except for Focus point. (but it is over-constrained)
μ is smaller than 0.4*m1/2 -> Higgsino like LSP dark matter
higgsino DM can annihilate much more,
also |μ| can be small in more relaxed model
LHC phenomenology (A) jets + mET + bjets (Higgsino coupling)
(B) Long cascade high jet multiplicity & less mET

Dark Matter (2)

If GUT relation is assumed M1(Bino) = M2(Wino) = M3(Gluino) Limit on Bino mass is 180GeV

(2) Heavy Colored particle. @ GUT M3(gluino) > M2(Wino)=M1(Bino) Colored particles are too heavy to be produced @ LHC, but Bino is still

about 100GeV

Sensitivity should be up, tight LID + ISR + optimization

Dark Matter (3)

If GUT relation is assumed M1(Bino) = M2(Wino) = M3(Gluino) Limit on Bino mass is 180GeV

(3) If all SUSY particles are degenerate same as UED: jets emitted from the cascade becomes soft.

ISR Trigger is low efficiency (~5%)

soft-lepton combined trigger(1) multi soft leptons(2) soft lepton + jets

	votion	ATLAS Exotics Searches* - 95% CL Lower Limits (Status: Dec. 2011)					
. C							
	Large ED (ADD) : monojet	$L=1.0 \text{ fb}^{-1}$ (2011) [ATLAS-CONF-2011-096] 3.2 TeV M_D (δ =2)					
	Large ED (ADD) : diphoton	L=2.1 fb ⁻¹ (2011) [Preliminary] 3.0 TeV M _S (GRW cut-off) AILAS					
Extra dimensions	$UED: \gamma\gamma + E_{T,miss}$	L=1.1 fb ⁻¹ (2011) [arXiv:1111.4116] 1.23 TeV Compact. scale 1/R (SPS8) Preliminary					
	RS with $k/M_{Pl} = 0.1$: $\gamma\gamma$, ee, combined, $m_{\gamma\gamma, \parallel}$	L=1.1-2.1 fb ⁻¹ (2011) [Preliminary, arXiv:1108.1582] 1.95 TeV Graviton mass					
	RS with $k/M_{Pl} = 0.1$: ZZ resonance, m_{IIII}	$L=1.0 \text{ fb}^{-1} (2011) \text{ [ATLAS-CONF-2011-144]} 575 \text{ GeV} \text{ Graviton mass} \qquad \int L dt = (0.03 - 2.1) \text{ fb}^{-1} (0$					
	RS with $g_{qqgKK}/g_s = -0.20$: $H_T + E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-123] 840 GeV KK gluon mass					
	Quantum black hole (QBH) : m_{dijet} , $F(\chi)$	L=36 pb ⁻¹ (2010) [arXiv:1103.3864] 3.67 TeV M_D (δ =6)					
	QBH : High-mass σ_{t+X}	L=33 pb ⁻¹ (2010) [ATLAS-CONF-2011-070] 2.35 TeV M _D					
	ADD BH ($M_{TH}/M_{D}=3$) : multijet, $\Sigma \rho_{T}$, N_{jets}	L=35 pb ⁻¹ (2010) [ATLAS-CONF-2011-068] 1.37 TeV $M_{\rm D}$ (δ =6)					
	ADD BH ($M_{TH}/M_{D}=3$) : SS dimuon, $N_{ch. part.}$	L=1.3 fb ⁻¹ (2011) [arXiv:1111.0080] 1.25 TeV M_D (δ =6)					
	ADD BH (M_{TH}/M_{D} =3) : leptons + jets, Σp_{T}	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-147] 1.5 TeV M_D (δ =6)					
CI	qqqq contact interaction : $F_{\chi}(m_{\text{dijet}})$	<i>L</i> =36 pb ⁻¹ (2010) [arXiv:1103.3864 (Bayesian limit)] 6.7 TeV Λ					
	qqll contact interaction : ee, combined, m_{\parallel}	L=1.1-1.2 fb ⁻¹ (2011) [Preliminary] 10.2 TeV Λ (constructive int.)					
	SSM : m _{ee/}	L=1.1-1.2 fb ⁻¹ (2011) [arXiv:1108.1582] 1.83 TeV Z' mass					
	$SSM: m_{T,e'}$	L=1.0 fb ⁻¹ (2011) [arXiv:1108.1316] 2.15 TeV W' mass					
a	Scalar LQ pairs (β =1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ (2011) [Preliminary] 660 GeV 1 st gen. LQ mass					
L(Scalar LQ pairs (β =1) : kin. vars. in jj, vjj	L=35 pb ⁻¹ (2010) [arXiv:1104.4481] 422 GeV 2 nd gen. LQ mass					
en	4^{th} generation : coll. mass in Q $\overline{Q}_{4} \rightarrow WqWq$	L=37 pb ⁻¹ (2010) [CONF-2011-022] 270 GeV Q ₄ mass					
h g	4^{th} generation : d $\overline{d}_4 \rightarrow Wt \tilde{W}t$ (2-lep SS)	L=34 pb ⁻¹ (2010) [1108.0366] 290 GeV d _A mass					
4-1	$TT_{4th gen} \rightarrow tt + A_0 A_0^4$: 1-lep + jets + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [arXiv:1109.4725] 420 GeV T mass ($m(A_0) < 140 \text{ GeV}$)					
	Techni-hadrons : dilepton, m _{ee/}	<i>L</i> =1.1-1.2 <i>f</i> b ⁻¹ (2011) [CONF-2011-125] 470 GeV ρ_T / ω_T mass $(m(\rho_T / \omega_T) - m(\pi_T) = 100 \text{ GeV})$					
Other	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=34 pb ⁻¹ (2010) [ATLAS-CONF-2011-115] 780 GeV N mass $(m(W_R) = 1 \text{ TeV})$					
	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=34 pb ⁻¹ (2010) [ATLAS-CONF-2011-115] 1.350 TeV W _R mass (230 < m(N) < 700 GeV)					
	$H_{L}^{\pm\pm}$ (DY prod., BR($H^{\pm\pm}_{L} \rightarrow)=1$) : <i>m</i> (like-sign)	L=1.6 fb ⁻¹ (2011) [CONF-2011-127] 375 GeV H ^{±±} _L mass					
	Excited quarks : γ -jet resonance, $m_{\gamma jet}$	L=2.1 fb ⁻¹ (2011) [Preliminary] 2.46 TeV q [*] Mass					
	Excited quarks : dijet resonance, m_{dijet}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.6311] 2.99 TeV q* mass					
	Axigluons : <i>m</i> _{dijet}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.6311] 3.32 TeV Axigluon mass					
	Color octet scalar : m_{dijet}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.6311] 1.92 TeV Scalar resonance mass					
	Vector-like quark : CC, m _{lvq}	L=1.0 fb⁻¹ (2011) [Preliminary] 900 GeV Q mass (coupling $\kappa_{qQ} = \nu/m_Q$)					
	Vector-like quark : NC, m_{IIq}	L=1.0 fb ⁻¹ (2011) [Preliminary] 760 GeV Q mass (coupling $\kappa_{qQ} = v/m_Q$)					
		10^{-1} 1 10 10^{2}					
*Only a calentian of the synilable results loading to mass limits shown							

ヒッグス、SUSYの発見 → 容れ物の科学

おたのしみに

おまけ

2011 Physics Proton Trigger Menu (end of run L = $3.3 \ 10^{33} \ \text{cm}^{-2}\text{s}^{-1}$)						
		Trigger Selection		L1 Rate	EF Rate (Hz)	
	Offline Selection	L1	EF	at 3e33	at Sess	
Single leptons	Single muon > 20GeV	11 GeV	18 GeV	8	100	
	Single electron > 25GeV	16 GeV	22 GeV	9	55	
T . 1	2 muons > 17, 12GeV	11GeV	15,10GeV	8	4	
I wo leptons	2 electrons, each > 15GeV	2x10GeV	2x12GeV	2	1.3	
	2 taus > 45, 30GeV	15,11GeV	29,20GeV	7.5	15	
Two photons	2 photons, each > 25GeV	2x12GeV	20GeV	3.5	5	
Single jet plus MET	Jet pT > 130 GeV & MET > 140 GeV	50 GeV & 35 GeV	75GeV & 55GeV	0.8	18	
MET	MET > 170 GeV	50 GeV	70GeV	0.6	5	
Multi-jets	5 jets, each pT > 55 GeV	5x10GeV	5x30GeV	0.2	9	
TOTAL				<75	~400 (mean)	

Some increase in L1 thresholds needed in 2012 (other measures need upgrade)
Many triggers have rate ~ Et⁻³, raising thr. 20% gives 50% rate reduction
Isolated single lepton triggers ready in 2011, but not yet used in physics
Factor of 2 to 3 available from tracking isolation alone at EF
Expect to keep 25 GeV single lepton offline thresholds in 2012

124GeV

tautau 1 σ レベルだけど zeroともconsistent

HZ(II,nunu) HW(Inu)

Higgs Mass [GeV]

[F] Heavy Higgs (ZZ→llqq, llvv)

(1) $\Gamma \sim M_h^3$ becomes wide for a heavy higgs, the benefit using "lepton" becomes less. (2) Br(Z->ee,mumu)* σ is too small for heavy Higgs

 $H \rightarrow ZZ \rightarrow IIvv$ and IIqq help the sensitivity for the heavy Higgs.

 $H \rightarrow ZZ \rightarrow IIvv$: OS lepton pair whose invariant mass is Mz, and large mET MT is calculated as follow, (MT < Mh, but there is Jacobian broad peak near Mh)

General comments on BG processes

BG estimation is crucial for SUSY hunting, since no peak is expected. Main BG is W/Z+jets,

top pair production and QCD multijet processes. (diboson also contributes to EW gaugino direct production)

Control regions are defined to enhance these SM BG processes and check the various distributions.

BG1: Control regions (QCD)

QCD multi-jets processes contribute to BG for many SUSY searches, when v emits in a heavy flavor jet or when jet energy is miss-measured (Fake mET).

Large mET is useful variable for SUSY. Also Scalar sum of Jet activity(HT) is useful. Sum of them, Meff= mET+ Σ PT (jet) is used in ATLAS.

Data is harder than PYTHIA prediction.

PYTHIA is parton shower scheme, To produce high PT jet, Q^2 of shower evolution is set high, still not enough, On the other hand, Q^2 is high then too many jets are produced in PYTHIA and there is discrepancy.

QCD BG is estimated with real data using this CR

ΔΦ(jet vs mET) <0.4 is required to obtain QCD sample

Meff= mET+ Σ PT (jet)

Yellow and blues show the simulated distribution of γ +jets and Z(II)+jets Currently MC produced by ALPGEN are used and Normalization has been performed using data. There are two serious problems:

- (1) Statistic of both Data & MC are limited in the interesting regions. No body believes MC for such a high end of the kinematics. Linear extrapolation or asymptotic?
- (2) If use use MC information, JES uncertainties (~10%) will contributes. still high.
BG3: Control regions (W)

M_T< M_W & no bjets are selected
to obtain W+jets sample.
Blue shows the simulated W+jets BG.
MC is produced with ALPGEN.

Statistic is high comparing to Z+jets Slop is slightly different? Data is harder ?

Currently

Normalization is determined by data & shape predicted by ALPGEN is used.

Linear extrapolation ? some structure asymptotically ? This becomes key I will show later.

Prediction (W+jets BG in high Meff region) is most urgent & important, otherwise we can not conclude even if we have an excess, (the same as H->WW)

BG4: Control regions (tt)

 $M_T < M_W$ & bjets are selected to obtain tt sample and the pure tt sample can be selected.

tt is not dominant BG except for mET+bjet analysis, since σ at 7TeV is 170pb.

It becomes serious at ECM=14TeV (830pb)

Now basically We use MC even with normalization.

But tt+Njets, high meff regions still need more data and study. Different kinematic regions are used in top WG and SUSY WG

m0

Main BG W(lnu)+jets, Z(nunu)+jets, top, QCD(2jets以外は効かない) mETを厳しくしてもW/Zは結構 最後まで残る。 ECM 7TeV なので top σ=830pb -> 160pb (断面積 1/5) W/Z が 1,2,3 で主

Jet PT of W+jets process comparing with signal

Squark, gluino ~ 800GeV This channel is crucial for "discovery"

2leptons Mode

chargino1 + neutralino2 -> lepton pairs + mET (no requirement on jet)

2leptonelectron (medium: PT>25GeV for leading
muon (combined: PT>20GeV for leading>20GeV for 2nd)>10GeV for 2nd)

No excess was found -> still sensitivity is less than 100GeV(Bino) for direct production Lepton ID should be more tight to reduce fake contribution.

極端なケースでの制限

.

CMSの解析

$$\rightarrow \alpha_T = \sqrt{\frac{p_{T,j2}/p_{T,j1}}{2(1-\cos\Delta\phi)}}$$

バランス 分子 1 分母 4 ½ アンバランス 分母 小さい > 1/2

High HT cut candidate 1, a few 感度が高くなる

mET + jets with B jet (Stop search)

(C) No lepton + 2 b jets + mET (stop pair sbottom pair) direct productio of stop/sbotom stop/sbotom -> b + chargino/neutralino (chargino -> LSP+soft)

Results of Topology A (bjet +No lepton)

At least 3jets(PT>130,50,50) MET>130GeV MET/Meff>0.25 Δφ>0.4 Meff>700GeV Bjet>=1 Bjet>=2

Green shows the tt BG(Leading contribution), data is consistent with SM BG No excess was found in both topology. N>=2bjets is useful to suppress W/Z+bb BG since g->bb has relatively small angle and can not be distinguish for high Pt region.

Results of Topology B(bjets+lepton)

Exactly One lepton PT>25GeV (electron) PT>20GeV(muon) At least 4jets(PT>50GeV) MET>180GeV MT>100GeV Meff>600GeV At least 1 b jet Electron Muon

Top is main BG(green), yellow band shows the systematic error of the estimation. JES error and b-tag error are dominant.

small excess (< 2σ) was found : tt+Njets is need to be understood.

Results of Topology C (2bjets)

sbottom-sbottom cross section (PR

Stop->b+chargino (Higgsino/Wino lighter) In both case ΔM(charhino-neutralino) becomes smaller

2bjet+mE_T is event-toplogy

PT>130,50GeV (no 3^{rd} jet > 50) MET>130GeV $\Delta \phi$ /MET/MET (standard susy) good 2b jet MCT > 150GeV

Trigger is crucial ΔM < 200GeV is not triggered

> tt -> bbWW is main BG both W decays leptonically, lepton(tau) PT is soft.

Large contraverse mass is expected for signal. End point is almost stop mass if ΔM (stop wino) is large.

MCT>150GeV is signal region 18events observed 10.9+- 4.5 BG expect Slight excess (< 2σ) Still investigating BG edge of MCT is 250GeV $\rightarrow \Delta M \gg 0$ m(stop)=250GeV inconsistent with σ ~ 150GeV ΛM

 \rightarrow ΔN \sim 150GeV m(stop)~350GeV

5 SUSY with Exotic signature

Motivation

(1) AMSB Wino LSP chargino life $c\tau$ = 1-10 cm Wino Ω <<1 (2) GMSB stau NLSP stable in detector or decay in ID Gravitino DM (3) SPLIT SUSY (m0>1000TeV) gluino \rightarrow R-hadron (4) R-parity violation If coupling is small displaced vertex

Signatures

methods as function of lifetime

ςτγ ().1mm	100mm		1000m	าm		∞
	Displaced Vertex	dE/dx in Pixel	Kink / Disappearing	dE/dx in TRT	Time of Flight In Calorimeter	Time Of Flight In Muon Spectrometer	Stop in Calorimeter
RPV	✓		✓				
AMSB		√?	✓ ★				
Stau LL		✓ ★	\checkmark		✓	✓ ★	✓
Stau SL	√?						
R-had		\checkmark			\checkmark	\checkmark	\checkmark

Radius of each detector

	ATLAS	CMS
Vertex	0.1mm	0.1mm
Pixel(dE/dx)	5-10cm	5-100cm
TRT	50-100cm	No
Hcal	2-4m (Δ t~1nsec)	1.5-2.5m
μ	5-10m(Δ t~1nsec)	4-6m

Hadronic calorimeter Fe or cu Depth 1m time resolution ~1nsec

Ionization energy loss dE/dX $\sim 1/\beta^2$ We can use this information to search for heavy stable particles. Pi is the probability

for a minimum–ionizing particle (MIP) to produce a charge smaller or equal to the *i*–th charge measurement for the observed path length in the detector

(A2) TOF information using muon

drift time = TDC output time
 - T₀(flight time from IP)
 drift circle = function(drift time)
Then the position is determined.

But $\beta=1$ is assumed for this calculation. For the particle with $\beta<1$, drift circle become wrong.

Then the chi² becomes worse, since the calculated drift is worse. T0 is fitted to obtain best chi²

β=0.3-0.95

(A1) dE/dx in ID + (A2) muon TOF (I)

BG is estimated assuming that PT, dE/dx and $1/\beta$ are independent

(A1) dE/dx in ID + (A2) muon TOF (II)

	Heavy Bosons	
Z' _{SSM} 1.94	2011	
Z'y II 1.62	2011	
Gкк II k/M = 0.1 1.78	2011	
W' Iv 2.27	2011	
W' dijet 1.51	2011	
Gкк үү k/M = 0.1 (2010) 0.945	2010	
	4th Generation	
$M_{b'}, b' \Rightarrow tW (2010)$ 0.361	2010	
$M_{t'}, t' \Rightarrow tZ (100\%)$ 0.417	2011	
$M_{t'}, t' \Rightarrow bW (100\%), l+jets$ 0.45	2011	
	Heavy Stable Particles	
Mgluino, HSCP 0.899	2011	
Mgluino, Stopped Gluino 0.601	2011	
M _{stop} , HSCP 0.620	2011	
M _{stop} , Stopped Gluino 0.337	2011	
M _{stau} , HSCP 0.293	2011	
	Large Extra Dimensions	
M _s , γγ, GRW (2010) 1.89	2010	
M _s , μμ, GRW (2010) 1.75	2010	
M _D , monojet, n _{ED} = 2 (2010) 2.56	2010	
M_D , monojet, $n_{ED} = 6$ (2010) 1.68	2010	
M_{BH} , rotating, $M_D=3.5$ TeV, $n_{ED}=2$ 4.1	2011	
M _{BH} , non-rot, M _D =1.5 TeV, n _{ED} = 6 5.1	2011	
String Ball M, M _D =2.1, M _s =1.7, g _s =0.4 4.1	2011	
Comp	ositeness and Contact Interacti	ons
String Resonances 4.0	2011	
E ₆ diquarks 3.52	2011	
Axigluon/Coloron 2.47	2011	
q* , dijet 2.49	2011	
q [*] , boosted Z 1.17	2010	
$e^*, \Lambda = 2 \text{ TeV}$ 0.720	2010	
$\mu^*, \Lambda = 2 \text{ TeV}$ 0.745	2010	
C.I. A , dijet mass (3 pb ⁻¹) 4.0	2010	
C.I. A, X analysis 5.6	2010	
	LeptoQuark	
LQ1, β=0.5 (2010) 0.340	2010	
	2010	
LQ1, β=1.0 (2010) 0.384	2010	

(A1) dE/dx in Pixel + (A2) muon TOF (I)

R-hadron: R^{\pm}

Stable R-hadron

• ionize dE/dx ~ $1/\beta^2$ (Beth-bloch)

Hadronic
 Gluino interaction becomes smaller
 in high energy.
 Spectator quark interacts hadronically.
 momenta of them are small
 → small dE/dx is expected.

HE-LHC – LHC modifications

many proton crossing in one bunch crossing: MB cross-section is as large as 70 mb, many hadronic collision are superimposed

