The Joint Institute for Nuclear Astrophysics

An Introduction to the Ion-Optics of Magnet Spectrometers

U. Tokyo, RIKEN The 14th RIBF Nuclear Physics Seminar

Series of Three Lectures CNS, University of Tokyo February 27, 2006

Georg P. Berg University of Notre Dame

The Lecture Series

1st Lecture: 2/27/06, 10:30 am: Formalism of ion-optics and design of a complete system

2nd Lecture: 2/27/06, 1:30 pm: Ion-optical elements, design, systems

3rd Lecture: 2/27/06, 3:00 pm: Experiments with dispersion matched high resolution spectrometers

3rd Lecture

3rd Lecture: 2/27/06, 3:00 pm: Experiments with dispersion matched, high resolution spectrometers

- Resolving power & resolution of a spectrometer
- A fully dispersion matched beam line/spectrometer
- Experiments with dispersion matched systems
- Dispersion matching for a secondary beam spectrometer (SHARAQ)
- Review of 1^{st} & 2^{nd} Lecture (4-6)
- Resolving power of a spectrometer(7)
- Dispersion matching (7 11)
- Dispersion matching & experiments with Grand Raiden (12 18)
- Dispersion matching with K600 and K > 0 (19 22)
- Dispersion matching for SHARAQ, achromatic analysis (23 27)
- Secondary beam and limits of dispersion matching (28)

Review 1st Lecture

Lorentz Force:
$$\vec{F} = \vec{q} \vec{E} + \vec{q} \vec{v} \vec{x} \vec{B}$$
Magnetic
force
$$(1)$$
TRANSPORT of Ray X₀
X_n = R X₀
(3)
using Matrix R
R = R_n R_{n-1}... R₀
(4)
TRANSPORT of σ Matrix (Phase space ellipsoid)
 $\sigma_1 = R\sigma_0 R^T$
(11)
Beam emittance:
 $\epsilon = \sqrt{\sigma_{11}\sigma_{22} - (\sigma_{12})^2}$
(5)

Taylor expansion, higher orders, solving the equation of motion, phases of a separator project

Ampere's Law:

Properties and design of magnets: Dipoles, Quadrupoles, Hexapole, Octupoles

Ion-optics of magnet systems: Quadrupole triplet, Magnet spectrometers, Wien filter

Diagnostics and field measurements:

Grand Raiden High Resolution Spectrometer

Max. Magn. Rigidity:5.1 TmBending Radius:3.0 mSolid Angle:3 msrResolving power p/dp:37000

Beam Line/Spectrometer fully matched

Spectrometer Transfer Matrix S

Spectrometer Design (1st Order Resolving Power)

Dispersion: $S_{16} = dx/(dp/p)$

Magnification: $S_{11} = dx(f.p.) / dx(tgt) = M$

Beam size: $2x_0$ (target, dispersive direction, monochromatic)

= D

Resolving Power: $R_p = \frac{p}{\Delta p} = \frac{D}{M*2x_0}$

Note: R_p depends on x_{0} , if not given here $x_0 = 1$ mm

Note: **Resolving Power** is the "best possible 1st order resolution a spectrometer can provide, disregarding higher order aberrations.

Resolution is what is measured in the Focal Plane.

Resolution is also affected (deteriorated) by:

Spectrometer aberrations, beam properties, target effects, detector resolution

Note: "**Resolution**" in Energy
$$R_E = \frac{E}{\Delta E} = 0.5 * R_p$$

because $E = p^2/m$ (non-relativistic)

Peaks are "resolved" when $\Delta x = FWHM$

Dispersion Matching

- High resolution experiments
- Secondary beam (large dp/p)

Fig. 1. Schematic layout of the incident particle 1 and the outgoing particle 2 relative to the beam and spectrometer.

8

Solution of first order Transport and Complete Matching

The transformation (without assuming
$$(s_1 e_{-} - s_1 e_K)$$
 in the
bending plane from the cyclotron exit to the focal plane is given as:
 $x_{(.p.)} = x_0 (s_{11} b_{11} T + s_{12} b_{22}) \rightarrow kin. defoc. equ. (1) (23)$
 $b_0 (s_{11} b_{12} T + s_{12} b_{22}) \rightarrow kin. defoc. equ. (1) (23)$
 $b_0 (s_{11} b_{12} T + s_{12} b_{22}) \rightarrow kin. defoc. equ. (1) (23)$
 $b_0 (s_{11} b_{12} T + s_{12} b_{22}) \rightarrow kin. defoc. equ. (1) (23)$
 $b_0 (s_{12} + s_{16} K) \rightarrow disp. matching$
 $\theta (s_{12} + s_{16} K) \rightarrow kin. convection (kin. displac)$
 $\theta_{(s_{12} + s_{16} K)} \rightarrow kin. convection (kin. displac)$
 $\theta_0 (s_{21} b_{12} T + s_{22} b_{22}) \qquad equ. (2) (24)$
 $\delta_0 (s_{21} b_{12} T + s_{22} b_{22}) + s_{26} (s_{10} - s_{10} d_{10})$
 $\theta (s_{22} + s_{26} K) \qquad matching$
 $\delta_{(.p.)} = K \cdot \theta + \zeta \delta_0$
Spacial L

For details see: Y. Fujita et al., NIM B 126 (1997) 274

Complete Matching

For best **Resolution** in the focal plane, minimize the coefficients of all terms in the expression of **x** f.p.

For best **Angle Resolution** Minimize Coefficients of δ o in expression of Y f.p.

Note: Also the beam focus **b**₁₂ on target is important (**b**₁₂ = 0 for kinem. k = 0)

Spacial Dispersion Matching:
D.L. Hendrie In: J. Cerny, Editor, *Nuclear Spectroscopy and Reactions, Part A*,
Academic Press, New York (1974), p. 365.

Hendrie, Dispersion Matching $b_{16} = -\frac{D}{M} * \frac{C}{T}$ (23) $D = s_{16} = Spectrometer dispersion$ $<math>M = s_{11} = Spectrometer magnification$

Spacial and Angular Dispersion Matching

Solutions for b_{16} and b_{26} under conditions that both δ_0 -coefficients = 0 in (23) and (24)

$$s_{11} b_{16} T + s_{12} b_{26} + s_{16} C = 0$$

$$s_{21} b_{16} T + s_{22} b_{26} + s_{26} C = 0$$

Solutions:

$$b_{16} = -\frac{s_{16}}{s_{11}} (1 + s_{11} s_{26} K - s_{21} s_{16} K) \frac{C}{T}$$
 (25) Spacial Dispersion Matching

$$\mathbf{b}_{26} = (\mathbf{s}_{21}\,\mathbf{s}_{16} + \mathbf{s}_{11}\,\mathbf{s}_{26})\,\mathbf{C}$$

$$b_{12} = -\frac{s_{12}b_{22}}{s_{11}T} = \frac{s_{16}b_{22}K}{s_{11}T}$$

10

Spacial and Angular Dispersion Matching

Figure 2.2: Schematic ion trajectories under different matching conditions of a beam line

Grand Raiden High Resolution Spectrometer

Max. Magn. Rigidity: Bending Radius ρ ₀ : Solid Angle:	5.1 Tm 3.0 m	Beam Line/Spectrometer fully matched
Resolv. Power p/dp	37000	Magnetic Spectrometer
D2	Q2 SX Q1 Q2 SX Q1 Faraday cup for (³ He,t) $B\rho(t) \sim 2*B\rho(^{3}He)$ 0 1 2 3 m Dipole for in- plane spin component	Q-lens for Angular Dispersion Matching Tanga Point Focusing Q section Originative Tanan Cours Cours Allow Tanan Cours Tools To
		Pre-analyzer Focus Section
	Focal Plane Detector	

RCNP Facility Layout Osaka, Japan $D = S_{16} = 17 \text{ cm}/\% = 17 \text{ m}$

$$M = S_{11} \sim -0.45$$

Dispersion on target: $B_{16} = D/M = -37 \text{ m}$

Resolving power:

 $2x_0 = 1 \text{ mm}$ R = p/ $\Delta p = 37000$

Dispersion matched beam line WS to the high resolution spectrometer Grand Raiden

Momentum and Angular Resolution

Spacial & Angular Dispersion Matching & Focus Condition allows

Energy Resolution: $E/\Delta E = 23000$, $\Delta p/p = 40000$, despite beam spread: $E/\Delta E = 1700 - 2500$

Angular resolution: $\Delta Y_{scatt} = SQRT(\Delta Y_{hor}^2 + \Delta \Phi^2) = 4 - 8 \text{ msr}$

At angles close to beam (e.g. 0 deg) vert. angle component is needed \rightarrow Overfocus mode, small target dimension, because (y|y) is large, Limitation: multiple scattering in detector

Data suggest: Use y_{fp} not Φ_{fp} to calibrate angle!

Grand Raiden Angle Calibration

15

Scattering Angle reconstructed from focal plane measurements using complete dispersion matching techniques

L=0 Angular Distributions

$E(^{3}He) = 420 \text{ MeV}$

Figure 4.4: Spectrum of ${}^{58}\text{Ni}({}^{3}\text{He},t)$ reaction. The *lateral* and *angular dispersion matching* technique and *over-focus mode* were applied in this experiment for high energy and scattering angle resolution. Energy resolution of about 30 keV (FWHM) was realized.

Figure 4.5: Example of angle dependence in the ⁵⁸Ni(³He,t) spectra near 0°. Three spectra are shown for the angle ranges 0-0.8° (left), 0.8-1.4° (middle) and over 1.4° (right), respectively.
The 3.54 MeV state show clearly different angular distribution from the adjacent 1⁺ states which are dominated at forward angle.

Horizontal Beam Profiles in the Focal Plane of Grand Raiden

- QM8U
 →Control lateral dispersion
- QM9S
 →Control angular dispersion
- Lateral and angular dispersions can be controlled independently
- References

H. Fujita et al., NIMA T. Wakasa et al., NIMA Dispersion matching for K = 0 with faint beam

Study of Gamow-Teller Resonances

Effect of Dispersion Matching (Optical Resolution compared)

Where is the limit?

IUCF K600, dispersion matched beam line

- Thin-slit method (object 0.5 mm)
- Q7 for angular dispersion matching
- Triplet Q8-Q9-Q10 for disp. matching and focus

Resolving Power:
$$R_p = \frac{p}{\Delta p} = \frac{D}{M*2x_0}$$
 (22)

19

Diagnostic of Dispersion Matching (K > 0)

of beam line & spectrometer using a double strip target & multi slit

Target angle

Scattering angle

50 0_{fp} [mrad] 50 Multi slit 100 300 200 100 Beam COUNTS 800 300 COUNTS COUNTS 150 Target Left Strip IUCF K600, 1986 Right Strip 7000 6800 7000 7200 6800 x_{fp} [Channel]

Fig. 4. Scatterplots of horizontal position $x_{\rm fp}$ versus angle $\theta_{\rm fp}$ and projections measured in the focal plane of the K600 using the "multi-slit system". For details, see text.

not matched dispersion matched

Dispersion Matching for K > 0

21

Matched spectra K600 IUCF

Beam Line Layout (under revision)

Beam Line is shared with BigRIPS up to F6.
➢No layout freedom from F0 to F6.
Geometrical Limitation is very tight.

≻No layout freedom for the target position.

Target (F0)

Beam Line Elements

Superconducting Triplet Quadrupole Magnet (STQ)

Normal conducting Dipole Magnet

	Mart 1	
In the second second		
ALL STREET		

Pole length (mm)	500-800-500	Pole gap (cm)
	500-1000-500	Bending angle (degre
Pole tip radius (mm)	170	Mean orbit radius (m
Warm bore radius (mm)	140	Magnetic rigidity (T
Max. field gradient (T/m)	14.1	
One heyapole coil is imple	mented per a STO	

12

30

6

9

e

m)

Matching Condition for SHARAQ Beam line by T. Kawabata

 B_{ii} : Transport Matrix for Beam Line, s_{ii} : Transport Matrix for the Spectrometer

$$\begin{pmatrix} x_{\rm fp} \\ \theta_{\rm fp} \\ \delta_{\rm fp} \end{pmatrix} = \begin{pmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ \theta_0 \\ \delta_0 \end{pmatrix}$$

$$x_{\rm fp} = (s_{11}b_{11} + s_{12}b_{21})x_0 + (s_{11}b_{12} + s_{12}b_{22})\theta_0 + (s_{11}b_{13} + s_{12}b_{23} + s_{13})\delta_0$$

$$\theta_{\rm fp} = (s_{21}b_{11} + s_{22}b_{21})x_0 + (s_{21}b_{12} + s_{22}b_{22})\theta_0 + (s_{21}b_{13} + s_{22}b_{23} + s_{23})\delta_0$$

Dispersion Matching Condition

$$s_{11}b_{13} + s_{12}b_{23} + s_{13} = 0$$

SHARAQ Spectrometer

$$s_{11} = 0.423$$
 $s_{12} = 0.000$ $s_{13} = -5.781$
 $s_{21} = 0.744$ $s_{22} = 2.364$ $s_{23} = 0.557$

Angular Matching Condition

$$s_{21}b_{13} + s_{22}b_{23} + s_{23} = 0$$

Matching Condition

$$b_{13} = 13.663$$

 $b_{23} = -4.534$

From F3 to SHARAQ Target, GIOS calculations by T. Kawabata

 $\Delta \theta_{\rm x} = +/-10 \text{ mr}, \ \Delta \theta_{\rm y} = +/-30 \text{ mr}, \ \Delta x = +/-3 \text{ mm}, \ \Delta y = +/-5 \text{ mm}, \ \Delta P = +/-0.3 \%$

$$\begin{array}{l} \left\langle x' \left| x \right\rangle = -1.03 & \left\langle x' \left| \theta \right\rangle = 0.00 & \left\langle x' \left| \delta \right\rangle = -13.66 \\ \left\langle \theta' \left| x \right\rangle = 0.32 & \left\langle \theta' \left| \theta \right\rangle = -0.97 & \left\langle \theta' \left| \delta \right\rangle = 4.53 \\ \left\langle y' \left| y \right\rangle = -1.54 & \left\langle y' \left| \phi \right\rangle = 0.00 \\ \left\langle \phi' \left| y \right\rangle = 0.65 & \left\langle \phi' \left| \phi \right\rangle = -0.65 \end{array} \right. \end{array}$$

Dispersive Transport

- Double Focus at SQ.
- SQ, DQ1, and DQ2 are Normal Conducting.
- Symmetric STQ: STQ10-11, STQ9-12, STQ8-13
- Symmetric DQ: DQ1-2

Achromatic Transport (33)

 $\Delta \theta_{\rm x} = +/-20 \text{ mr}, \ \Delta \theta_{\rm y} = +/-30 \text{ mr},$

 $\Delta x = +/-3 \text{ mm}, \Delta y = +/-5 \text{ mm}, \Delta P = +/-0.3 \%$

$$\begin{array}{ll} \left\langle x' \left| x \right\rangle = 2.16 & \left\langle x' \left| \theta \right\rangle = 0.00 & \left\langle x' \left| \delta \right\rangle = 0.00 \\ \left\langle \theta' \left| x \right\rangle = 0.81 & \left\langle \theta' \left| \theta \right\rangle = 0.46 & \left\langle \theta' \left| \delta \right\rangle = -0.12 \\ \left\langle y' \left| y \right\rangle = -1.19 & \left\langle y' \left| \phi \right\rangle = 0.00 \\ \left\langle \phi' \left| y \right\rangle = 0.51 & \left\langle \phi' \left| \phi \right\rangle = -0.84 \end{array} \right. \end{array}$$

Achromatic Transport

- Same layout with the solution #31.
- STQ7, STQ8, STQ9, and STQ14 are same setting with the solution #31.
- Symmetric: STQ10-11, STQ9-STQ12, DQ1-2.
- Large horizontal magnification.

SHARAQ is a Spectrometer for Secondary Beams (RA = radioactive)

Implications of Secondary Beam:

Comparison with spectrometers with primary beams $(10^9 - 10^{12})$ beams (e.g. Grand Raiden)

- 1) Secondary beam means: low intensity $10^3 10^8$ particles/sec, large emittance and dp/p (beam)
- 2) Lateral dispersion matching ensures momentum resolution is better (up to 10 times) than dp/p
- 3) Angular dispersion matching ensures that angle can be reconstructed ($d\Theta_{tgt} = 2-7 \text{ mrad}$)
- 4) Dispersion matching depends on kinematic $K = (dp/d\Theta)/p$
- 5) Dispersion matching more difficult, because of large dp/p, K, large beam spot (10 cm?)
- 6) Dispersion matching not possible if kinematical $K = (dp/d\Theta)/p$ is too large
- 7) Consequence of 6) is, no dispersion matching in inverse kinematics
- 8) Diagnostics and measurements of secondary beam (as opposed to reaction particles) event-byevent becomes necessary for high momentum and angle resolution
- 9) Up to 10^6 beam part./sec use of detectors, resolution may be limited by multiple scattering.
- 10) $> 10^6$ beam part./sec when use of detectors impossible, consider momentum cutting slits
- 11) Beam diagnostics in beam line is very important

End Lecture 3