β-Decay Measurements of Neutron Rich Nuclei at the Holifield Radioactive Ion Beam Facility (HRIBF)

> B. Charles Rasco Louisiana State University

> > RIKEN June 12, 2012

Origin of the Elements

It is believed that there are three main types of processes that account for the observed elements in the universe

• s-Process

~80% of Isotopes (n,γ) MACs Needed Occurs in Asymptotic Giant Branch (AGB) Stars Branch Points Crucial

r-Process
 ~70% of Isotopes
 Far from Stability
 Occurs Where?

p-Process
 ~10% of Isotopes
 Secondary Process

r-Process Example Nucleosynthesis in the r-process JINA Joint Institute for Nuclear Astrophysics 2002 Movie : H. Schatz, T. Elliot NSCL, Michigan State University Calculation : K. Vaughan, J.L. Galache, and A. Aprahamian, University of Notre Dame : B. Mever, Clemson University Model and R. Surman, North Carolina State Temperature: 1.50 GK Time: 2.7e-14 s

T_{1/2}, Nuclear Masses, and P_n (Neutron Emission Probability) Most Important to Measure in Order to Predict Final Abundances of Elements Generated with the r-Process

Origin of the Elements

Beta decay proceeds to a wide range of states in the daughter nucleus

Lower energy states are favored due to Fermi factor, but the nuclear matrix element plays an equally important role

Neutron emission changes the final abundance in a given mass chain and replenishes neutron density of environment

Holifield Radioactive Ion Beam Facility(HRIBF) at Oak Ridge National Lab (ORNL)

Unfortunately the HRIBF has Ceased Operations Further Studies at Argonne National Lab in the US and TRIUMF in Canada are Possible

Useful Detectors Used in β Decay Studies

Gamma Detector Limitations: Low Efficiency, Poor Energy Resolution (Nal)

Neutron Detector Limitations: Low Efficiency, Poor Energy Resolution, y Discrimination

Electron Detector Limitations: Energy Threshold, γ Discrimination

Three New Detectors at ORNL Address these Detector Limitations

MTAS VANDLE 3Hen

The Pandemonium Effect

A.A. Sonzogni and M. Herman, NNDC 2011

Adopting "Apparent" decay pattern results in a wrong interpretation of β decay properties and respective nuclear structure. The energies and intensities of emitted γ -rays are underestimated while β -electron and neutrino energies are over estimated. **Total Absorption Spectrometry (TAS) is the Solution!**

Illustration of the Pandemonium Effect

Illustration of the Pandemonium Effect (Continued)

3.5MeV

1.7 MeV

700 keV

Ground State

1.8 MeV γ

 $1 \text{ MeV } \gamma$

700 keV v

Simulated 4 γ Decay from a Hypothetical 5.8 MeV Level

(E_{γ} =700 keV, 1 MeV, 1.8 MeV, and 2.3 MeV)

Current and Previous TAS Detectors

Modular Total Absorption Spectrometer (MTAS) ORNL (since ~2011)

Idaho TAS : (1990' s \rightarrow ANL) MTAS has 17 times larger volume

LBNL TAS : GSI (1995 – 2003) \rightarrow LBNL MTAS is 7 times larger

Valencia-ISOLDE "Lucrecia" TAS (since ~2003) MTAS is 8 times larger

MSU-Notre Dame "SuN" TAS (since ~2011) MTAS is 5 times larger

Modular Total Absorption Spectrometer

19 Hexagonal NaI(TI) Modules (53.3 cm x 17.6 cm Face to Face) with Carbon Fiber Housing Each Regular Module has 2-5" PMT, while the Center Module has 12-2" PMT
 Center Module has 6.35 cm Hole to Accommodate Beam Line and Auxiliary β-Detectors Approximately **One Ton** of NaI(TI)!

Modular Total Absorption Spectrometer

MTAS Ring Identification

Efficiency of MTAS

Single γ Total Efficiency and Single γ Full Energy (Peak) Efficiency are Critical Parameters for Total Absorption Spectrometry (TAS)

Simulated Single γ-Ray Efficiency versus Energy Total Efficiency: Any Energy Deposited Full Energy (Peak) Efficiency: All Energy Deposited

Single γ-Ray Full Energy Efficiency by Ring Also Shown are ¹³⁷Cs and ⁶⁵Zn Data

Test Measurements with ¹³⁷Cs Source

Uniformity of modules was measured with ¹³⁷Cs source placed along each side (19 measurements per each side, 1["] steps)

Simulation of Light Production in Nal(TI)

Contributing Factors to Energy Resolution

Green Are Optical Photons Generated by Electrons (Select Few for Illustration Purposes)

- Photoelectric Absorption
- 1 Reflection at Teflon Nal Boundary
- 2 Absorption at Teflon Nal Boundary
- 3 Absorption by Nal Crystal

- Compton Scattering
- 4 Reflection at Nal Window Glass Boundary
- 5 Reflection at PMT Cathode Face
- 6 Absorption with PE Creation on PMT Face

+ Nonlinear Light Production!

Nonlinear Light Generation in Nal(Tl)

Scintillators generate light approximately proportional to the energy deposited. But at low energy this is not necessarily the case. Organic scintillators often see a decrease in light output per energy deposited. Nal(Tl) actually generates an excess of light for energies less than ~1 MeV.

Parameterized experimental light output of electrons of a specified initial energy. The curve is normalized to unity for 3 MeV electrons.

Experimental light output of γ rays versus initial energy. The curve is normalized to unity at 662 keV. T. Tojo, NIM A238 (1985)

Simulation of Light Production in Nal(Tl) Nonlinear Light Generation

Results from dE/dx based light production in GEANT4. Good results for particles above ~20keV.

Simulation Compared to Measurement

Simulation Compared to Measurement High Activity ¹³⁷Cs Center Module

Triangles – Simulation Open Circles - Data Per PMT Channel for Each Additional γ in Multi-γ Decays
~3 keV Shift per PMT per extra γ in Center Module (2.5" PMT)
~7 keV Shift per PMT per extra γ for Other Modules (5" PMT)

Simulation Compared to Measurement High Activity ¹³⁷Cs Center Module

Modularity Uses of MTAS

Ratio of the counts in the central detector versus the inner ring of modules gives a measure of the γ multiplicity of the event

MTAS Experimental Setup

First MTAS measurement of 87 Kr radioactivity (T_{1/2}=76 min) at the HRIBF

A=87 mass chain ending with ⁸⁷Kr decay is produced in thermal neutron fission at the rate of 2.5% per ²³⁵U and 1% per ²³⁹Pu

Channel Number (2 keV/channel)

MTAS at the HRIBF's OLTF, January 2012

Example of Collected Data: Priority "1" Decay of ⁸⁶Br \rightarrow ⁸⁶Kr + β ⁻

 γ Energy Detected (1 keV/channel)

The measured MTAS gamma spectrum (red line) is compared to the simulation of MTAS response (white line) to the decay of ⁸⁶Br listed in the adopted data files. The normalization is made to match the feeding of the 1.6 MeV excited state in ⁸⁶Kr. An excess of high energy gamma radiation release is clearly detected *(A. Kuźniak et al., January 2012, preliminary)*

ISBN 978-92-64-99034-0

Table 3. Requested TAGS measurements

Nuclear Science NEA/WPEC-25

International Evaluation Co-operation

VOLUME 25

ASSESSMENT OF FISSION PRODUCT DECAY DATA FOR DECAY HEAT CALCULATIONS

A report by the Working Party on International Evaluation Co-operation of the NEA Nuclear Science Committee

CO-ORDINATOR

MONITOR

T. Yoshida Musashi Institute of Technology JAPAN

A.L. Nichols International Atomic Energy Agency AUSTRIA

Red Arrows Indicate Recent MTAS-OLTF Measurements

Y88	Y89	Y90	Y91	Y92	Y93	Y94	Y95
106.65 d		64.00 h	58.51 d	3.54 h	10.18 h	18.7 m	10.3 m
Sr87	Sr88	Sr89	Sr90	Sr91	Sr92	Sr93	Sr94
		50.53 d	28.79 y	9.63 h	2.66 h	7.42 m	75.3 s
Rb86	Rb87	Rb88	Rb89	Rb90	Rb91	Rb92	Rb93
18.64 d		17.78 m	15.15 m	158 s	58.4 s	4 .49 s	5.84 s
Kr85	Kr86	Kr87	Kr88	Kr89	Kr90	Kr91	Kr92
10.77 y		76.3 m	2.84 h	3.15 m	32.32 s	8.57 s	1.84 s
Br84	Br85	Br86	Br87	Br88	Br89	Br90	Br91
31.80 m	2.90 m	55.1 s	55.65 s	16.36 s	4.40 s	1.91 s	541 ms
Se83	Se84	Se85	Se86	Se87	Se88	Se89	Se90
22.3 m	3.1 m	31.7 s	15.3 s	5.50 s	1.53 s	410 ms	300 ms
As82	As83	As84	As85	As86	As87	As88	As89
19.1 s	13.4 s	4.02 s	2.02 s	945 ms	610 ms	300 ms	200 ms

La138	La139	La140	La141	La142	La143
		1.67 d	3.92 h	91.1 m	14.2 m
Ba137	Ba138	Ba139	Ba140	Ba141	Ba142
		83.1 m	12.75 d	18.27 m	10.6 m
Cs136	Cs137	Cs138	Cs139	Cs140	Cs141
13.16 d	30.16 y	33.41 m	9.27 m	63.7 s	24.84 s
Xe135	Xe136	Xe137	Xe138	Xe139	Xe140
9.14 h		3.81 m	14.08 m	39.68 s	13.60 s
1134	1135	1136	1137	1138	1139
12.1		03.4.4	24.13.5	6.23 6	2.28 €
52.5 m	6.57 h	03,45		0.233	2.203
Te133	Te134	Te135	Te136	Te137	Te138
Te133	6.57 h Te134 41.8 m	Te135	Te136	Te137	Te138

	Radionuclide	Priority	Q _{fl} -value (keV)	Half-life	Comments	
\rightarrow	35-Br-86	1	7626(11)	55.1 s		
→	35-Br-87	1	6852(18)	55.65 s	Extremely complex decay scheme with substantial gamma component; large uncertainties in the mean gamma energy arises from significant disagreements between the various discrete gamma-ray measurements. Also (β ,n) branch.	
	35-Br-88	1	8960(40)	16.36 s	(β ⁻ ,n) branch.	
\rightarrow	36-Kr-89	1	4990(50)	3.15 min	Incomplete decay scheme.	
\rightarrow	36-Kr-90	1	4392(17)	32.32 s	Incomplete decay scheme.	
\rightarrow	37-Rb-90m	2	6690(15)	258 s	Repeat of INL TAGS measurement; data check.	
\rightarrow	37-Rb-92	2	8096(6)	4.49 s	Small (β ⁻ ,n) branch.	
	38-Sr-89	2	1493(3)	50.53 d		
	38-Sr-97	2	7470(16)	0.429 s	Extremely short half-life (0.429 s), and possible (β^{-}, n) branch.	
	39-Y-96	2	7096(23)	5.34 s		
	40-Zr-99	3	4558(15)	2.1 s		
	40-Zr-100	2	3335(25)	7.1 s		
	41-Nb-98	1	4583(5)	2.86 s		
	41-Nb-99	1	3639(13)	15.0 s		
	41-Nb-100	1	6245(25)	1.5 s		
	41-Nb-101	1	4569(18)	7.1 s		
	41-Nb-102	2	7210(40)	1.3 s		
	42-Mo-103	1	3750(60)	67.5 s		
	42-Mo-105	1	4950(50)	35.6 s		
	43-Tc-102	1	4532(9)	5.28 s		
	43-Tc-103	1	2662(10)	54.2 s		
	43-Tc-104	1	5600(50)	18.3 min		
	43-Tc-105	1	3640(60)	7.6 min		
	43-Tc-106	1	6547(11)	35.6 s		
	43-Tc-107	2	4820(90)	21.2 s		
	51-Sb-132	1	5509(14)	2.79 min		
	52-Te-135	2	5960(90)	19.0 s		

	Radionuclide	Priority	Q _B -value (keV)	Half-life	Comments
	53-I-136	1	6930(50)	83.4 s	Incomplete decay scheme.
	53-I-136m	1	7580(120)	46.9 s	
\rightarrow	53-I-137	1	5877(27)	24.13 s	(β^{-},n) branch.
->	54-Xe-137	1	4166(7)	3.82 min	Incomplete decay scheme.
→	54-Xe-139	1	5057(21)	39.68 s	
•	54-Xe-140	1	4060(60)	13.6 s	
->	55-Cs-142	3	7308(11)	1.69 s	(β^{-},n) branch.
	56-Ba-145	2	5570(110)	4.31 s	Repeat of INL TAGS measurement; data check.
	57-La-143	2	3425(15)	14.2 min	Repeat of INL TAGS measurement; data check.
	57-La-145	2	4110(80)	24.8 s	Repeat of INL TAGS measurement; data check.

MTAS Collaborators

K.P. Rykaczewski¹, C.J. Gross¹, R.K. Grzywacz^{1,3}, J. Johnson¹, A. Kuźniak^{2,3}, M. Karny^{1,2,4}, D.Miller³, B.C. Rasco⁵, D.Stracener¹, M. Wolińska-Cichocka^{1,4}, E. Zganjar⁵

¹ORNL, Oak Ridge, TN 37830, USA, ²University of Warsaw, Warsaw, PL 00-681, Poland, ³University of Tennessee, Knoxville, TN 37996, USA, ⁴ORAU, Oak Ridge, TN 37830, USA, ⁵Louisiana State University, Baton Rouge, LA 70803, USA

Versatile Array of Neutron Detectors at Low Energy (VANDLE)

Neutron Time of Flight Detector

~250 Configurable Scintillator (BC408) Bars

Two sizes of Scintillator Bars: 200 cm length (5² cm² area)

60 cm length (2.5² cm² area)

Bars can be arranged in different configurations that are optimized for particular types of measurements including transfer reactions like (d,n) and neutron emission following β decay

First VANDLE Experimental Setup

- Time of Flight Neutron and $\boldsymbol{\gamma}$ Detector
- $40 60 \times 2.5 \times 2.5 \text{ cm}^3$ Scintillator Bars
- 2 Clover Germanium Detector
- 2 Plastic Scintillator $\boldsymbol{\beta}$ Detectors

Single VANDLE Bar ²⁵²Cf Measurements

t₁+t₂ (~Average Time) (Channel Number)

Raw VANDLE Data from ⁷⁷Cu

Time of Flight

The Versatile Array of Neutron Detectors at Low Energy Rote delayed neutron emitters near r process path

Beta-delayed neutron emitters near r-process path studied at HRIBF/LeRIBSS in February 2012

VANDLE Collaborators

R. Grzywacz^{1, 2}, S.V. Paulauskas¹, M. Madurga¹, W.A Peters³, C.J. Gross², D.T. Miller¹
M. Al-Shudifat¹, D.W. Bardayan², J.C. Batchelder³, J. Blackmon⁴, N.T. Brewer⁵, L. Cartegni¹,
K. Chipps⁸, J.A. Cizewski⁶, P.A. Copp⁷, M.E. Howard⁶, S. Ilyushkin⁸, C. Jost², A. Kuzniak⁹, S. Liu³,
B. Manning⁶, C. Matei³, M. Matos⁶, A.J. Mendez II², K. Miernik², P.D. O'Malley⁶, S. Padgett¹,
B.C. Rasco⁴, D. Stracener², F. Raiola⁸, A. Ratkiewicz⁶, K. Rykaczewski², F. Sarazin⁸, K.T. Schmitt²,
I. Spassova³, D. Walter⁶, E.H. Wang⁵, M. Wolinska-Cichocka³, E. Zganjar⁴

¹Univeristy of Tennessee, Knoxville, TN 37996, USA ²Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA ³Oak Ridge Associated Universities, Oak Ridge, TN 37831, USA ⁴Dept. of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA ⁵Vandebilt University, Nashville, TN 37235, USA ⁶Rutgers University, Piscataway, NJ 08854-8019 USA ⁷University of Wisconsin-La Crosse, La Crosse, WI 54601, USA ⁸Colorado School of Mines, Golden, CO 80401, USA ⁹University of Warsaw, Warsaw PL-00-681, Poland

Thermalized Neutron Detector

Hybrid 3Hen Details in ()

74 (48) High Efficiency ³He Gas Tubes

(2 Clover Germanium Detectors)

2 Plastic Scintillator $\boldsymbol{\beta}$ Detectors

³He Tubes Surrounded by High Density Polyethylene to Help Thermalize Neutrons

Cadmium Layer Around Edge to Absorb Background Thermal Neutrons

Nuclei Ranged Out in Gas Chamber (First Experiment with Laser Ion Source High Purity Exotic ⁸⁶Ga Delivered)

Comparison of 3Hen to Other Detectors

HRIBF, Long-counter, and NERO Neutron Efficiency

Efficiency curve of full 3Hen detector array (74 3He tubes) compared to the efficiencies of other existing neutron counters like the long-counter of K.L. Kratz and of the NSCL Neutron Observer NERO.

From NNDC :

Energy Window (Q $_{\beta}$ - S $_{n}$)(Q value – Neutron Separation Energy) for β -Delayed Neutron Emission Precursors

Blue – β n emission not possible

Green – 3Hen $I_{\beta n}$ measurements of low energy $\beta n'$ s Red-Brown – β -delayed 2n emission (low energy?)

3Hen Collaborators

K.P. Rykaczewski, C.J. Gross, K. Miernik (ORNL Physics Division), R.K. Grzywacz, K.C. Goetz, M. Madurga, D. Miller, S.V. Paulauskas (UTK), M. Wolińska-Cichocka (ORAU/ORNL), I. Gauld (ORNL NST Division), B.C. Rasco, E. Zganjar (LSU), J.A. Winger (Mississippi),

A. Fijałkowska, M. Karny, A. Korgul, C. Mazzocchi (University of Warszaw)

Conclusion

Beta decay of neutron rich nuclei is important for understanding nuclear structure, the origins of the elements, and reactor decay heat.

New detector capabilities allow us to study more neutron-rich nuclei with low energy beams

A wealth of new data was acquired at the HRIBF over the last year – now under analysis

Unfortunately the HRIBF has now ceased operations as user facility

ORIC cyclotron being decommissioned

Further Studies using the CARIBU facility at Argonne National Lab and ARIEL at TRIUMF in Canada are Possible

THANK YOU

Backup Slides...

Figure 3. Radioactive and stable beams presently accelerated at the HRIBF. Additional radioactive species such as Zn, Kr, Cd, and Xe are available up to 200 keV as positive ions at LeRIBSS. Stable beams from our new SNICS source [11] are used for RIB development. They are also used to simulate RIBs for tuning and developing new techniques as well as to calibrate detectors.

Recent HRIBF data

Winger et al., PRL 102, 142501 (2009); PR C 80, 054304 (2009); PR C81, 044303 (2010), PR C82, 064314 (2010), PR C83, 014322 (2011) are pointing to much higher βn-branching ratios in the ⁷⁸Ni region

in comparison to earlier measurements and calculations, see, e.g., Pfeiffer, Kratz, Moeller (PKM 2002) Prog. Nucl. Energy, 41, 5 (2002)

Similar conclusion from a recent NSCL paper basing on NERO results P. Hosmer, H. Schatz et al., PR C82 , 025806, 2010

starts to be relevant for nuclear fuel cycle ?!

MTAS Shielding

"light" lead shieldinglead wool blankets~ ¾" lead equivalent

MTAS test stand was assembled next to the radioactivity storage room in order to test data transfer speed

Shielding Tests

Background level per module went down from ~ 16000 Hz to ~600 Hz

MTAS Tape Drive System

⁶⁰Co Data By Ring

dE/dx Curve Calculated from and Used in GEANT

Simulation of Light Production in Nal(Tl) Event Pile Up

Simulated pileup of one and two event ¹³⁷Cs in the central module Simulated pileup of one and two event ¹³⁷Cs in the inner ring

The probability for the next event to occur is given by $P(t) = e^{-\lambda t}$ λ -source activity

If this time is less than the digitizer acquisition time then a pileup has happened (with no event rejection)

For decays with changing activity, which includes most of the planned MTAS experiments, pileup peak heights will decrease as the activity decreases.

Comparison of relative peak heights versus time distinguishes pile up peaks from real peaks.

⁸⁷Kr Info

⁸⁷Kr β- Decay 1971Sh01,1973BlZH,1973GeYV

Sr 90 28,64 a

Rb 89 15,2 m

1,3; 4,5... 1032; 1248; 96.

Kr 88

0,5; 2,9. 392: 196: 96: 835.

Br 87 55,7 s

1420; 1476; 78; 532; 2006

Se 86 14,1 s

8⁻2,6... y 2441; 2660.

As 85 2,03 s

Sr 89 50,5 d

,42 Rb 88 17,8 m

5,3...

Kr 87 76,3 m

Br 86 55.1 s

Se 85

6.2... 345; 3396;

As 84

4.5 5

β⁻ 5.7... γ 1455; 667.

Sr 88 82.58

Rb 87 27.835

Kr 86 17,3

Br 85 2,87 m

Se 84

As 83 13.3 s

735; 1113...

Rb 86

Kr 85

Br 84

Se 83

69 s | 22,4 m

AS 82

15" 4.6. 7 882, 1896

4.48 h 10.76 a

Sr 91 9,5 h

β⁻ 1,1; 2,7... γ 1024; 750; 653...

Rb 90

4,3 m | 2,6 m

5.9... p⁻ 6.6. y 632; 75; 1061; 17... 4366; 107; e⁻ 4136.

Kr 89 3,18 m

3,5; 4,9 221; 586; 473; 904...

Br 88 16,3 s

Se 87 5.8 s

243: 334: 73: 468...

As 86

704

Sr 92

β⁻ 0.6; 1,9. γ 1384...

Rb 91

58 s

Kr 90 32,3 s

Br 89 4,40 s

8⁻⁻⁻ 8,1... y 1098; 775*

Se 88 1,5 s

p 7 159; 259; 1904...

As 87 0,73 s

β⁻ 5,8... γ 94; 2564; 3600; 346...

Sr 93 7,45 m

7 2,5; 3,4... 590; 876; 888; 10; 169...

Rb 92

4,5 s

815; 2821; 70

Kr 91 8,6 s

6,3; 6,4... 109; 507; 13; 1109...

Br 90 1,9 s

8⁻ 8,3; 9,7... 707; 1362

Se 89 0,4 s

As 88

2,540

1,963

Decay Scheme

87Rb