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Introduction

Spin and pseudospin symmetries

@ Spin symmetry (SS) breaking, i.e., ﬂ 126,
. . .. . 5/2 5/2
remarkable spin-orbit splitting in 7 == 32 (oo
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In shell model scheme
@ No spin-orbit coupling = total spin S a good quantum number = LS extreme X

@ No pseudo s.o. coupling = total spin Sa good quantum number = LS extreme

Hecht & Adler, NPA 137, 129 (1969); Arima, Harvey, Shimizu, PLB 30, 517 (1969)



Introduction

From spin scheme to pseudospin scheme

@ From spin scheme to pseudospin scheme

2

Hip = Eib with H = ;—M+ V(r)+ W(r)l-s
2
p ~

(UHUNUy = EUsp  with  UHU' = T V(r)+ W(r)-5§

@ Special ratio for vy /vy, e.g.,, U, =s -t
H = Hyo + V//|2 + vl - s

~

- D _—
H = Hyo + vyl + (4V// — V/5)| .S

* Parameters for the modified oscillator potential.
Bohr, Hamamoto, Mottelson, Phys. Scr. 26, 267 (1982)

Region — Vs — V) — \7/5

50 < Z < 82 0.127 0.0382 0.026
82 < N <126 0.127 0.0268 -0.019
82 < Z <126 0.115 0.0375 0.035
126 < N 0.127 0.0206 -0.045




Introduction

PSS in deformed nuclei

@ Single-particle states: [Nn,A|Q2 & [Nn,A +2]Q2 + 1 = [Nn\j\]
with N=N—-1A=A+1,Q=A+1/2

o Rotational bands: from AQ/M coupling to ARIM coupling
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Bohr, Hamamoto, Mottelson, Phys. Scr. 26, 267 (1982) * gs. & neighboring bands in “*'Os

Data: Bruce et al., PRC 56, 1438 (1997)
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PSS in shell structure evolutions
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EG.., & \ 1 1 I
125k — T2 0.0
-40 -30 -20 -10 0
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* Proton single-particle energies for 1*°Gd * Pseudospin-orbit splitting in Sn isotopes
Long, Nakatsukasa, Sagawa, Meng, Nakada, Zhang, Meng, Sugawara-Tanabe, Yamaji, Arima PRC 59, 154 (1999)

PLB 680, 428 (2009)

@ Splitting of both spin and pseudospin doublets play important roles in the shell

structure evolutions.

@ It is a fundamental task to explore the origin of SS and PSS, as well as the

mechanism of their breaking.
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PSS as a relativistic symmetry

PSS — a relativistic symmetry

@ PSS — a relativistic symmetry in Dirac Hamiltonian
a. | is the orbital angular momentum of the lower component of the Dirac spinor
Ginocchio, PRL 78, 436 (1997)
b. the condition that S(r) + V/(r) = 0 is suggested as the exact PSS limit by
reducing the Dirac equation to the Schrodinger-like equation Ginocchio:1997
c. S(r) + V(r) = Constant can be approximately fulfilled in exotic nuclei with

highly diffuse potentials Sugawara-Tanabe:1998,2000, Meng:1998,1999

@ Dirac equation: (local potentials, no tensor potential, spherical symmetry)
Y(r)+ M —44& G(r)\ £ G(r)
4 _Ar)—-M F(r) F(r) )’

X(r)=S5(r)+ V(r), A(r) = 5(r) — V(r),

where

and
k=F({+1/2) for joc=Ic+1/2.



PSS as a relativistic symmetry

Potentials and single-particle spectrum of neutron
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0 2 4 6 8 10 12 % Neutron spectrum of 132Gn. For each pair of the spin
r (fm) doublets, the left level is with j =/ — 1/2 and the

right one with j = / + 1/2. The dashed line shows

% Neutron potentials in 132G calculated by the continuum limit.

RMF theory with PK1 parameter.
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Spin-orbit and pseudospin-orbit splittings
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% Spin-orbit and pseudospin-orbit splittings in neutron spectrum of 3°Sn versus the average energy of a
pair of spin doublets. The vertical dashed line shows the continuum limit.



PSS as a relativistic symmetry

functions of spin and pseudospin doublets

| ] l | ] l | ] l | ] l | ] l | ]
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0.0 -
0 2 [l [l ' [l ' [l ' [l ' [l
0 2 4 6 8 10 12 0 2 4 6 8 10 12

% Wave functions of spin doublets 1f and pseudospin doublets 1d.

@ The upper components of spin doublets 1f are similar to each other.
@ The lower components of pseudospin doublets 1d are similar to each other.




PSS as a relativistic symmetry

Schrodinger-like equations

@ Schrodinger-like equations

1 d? 1 dM, d 1 k(k+1) 1 dM. .k
— o M+ X —| ¢+ G=EG
{ M. dr? i M2 dr dr i [( )+ M. r? i M2 dr r ’

1 d? 1 dM_ d 1 kk—1) 1 dM_«k
— — —M—-A — —| » F = EF
{ M_ dr? i M? dr dr - [( )+ M_ r M?  dr r] } ’

with effective masses M, = M +A+E, M =E — M — L.

@ In analogy with Schrodinger equation,

Vs — 1 k(k+1) Vo 1 dM, K
CB — M_|_ r2 ’ SOP — M_%_ dr r-

1 wk(k—1 1 dM_k

Vecs = ( 3 ), Vpsop = W

@ M_ =0 at finite ry = there exist singularities in Vpcp and Vpgop
o Effective Hamiltonian is not Hermitian = perturbation theory can NOT be applied
@ No bound nuclei in PSS limit S(r) + V(r) = Constant




PSS as a relativistic symmetry

Still an open problem

No bound states in the proposed PSS limit
= PSS is a dynamical symmetry in nuclei Alberto:2001
— The nature of PSS is nonperturbative Alberto:2002, Ginocchio:2011

= PSS is an accidental symmetry in the relativistic framework Marcos:2008

Pseudospin-orbit splitting

d tilde

= 4 p tilde g’\
L_J, = f tilde - L
a2 - - 0]
- |
0 g tilde 1 -
N R P T PR . I
880 890 900 910 920 930 940 950 0 2 4 6 8 10 12
E,. (MeV) r (fm)

@ PSS can be understood qualitatively but not quantitatively?
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Nature of PSS: perturbative or not

Perturbation theory (1)

Rayleigh-Schrodinger perturbation theory

@ Hamiltonian is split up as
H=Hy,+ W.

@ The eigenvalues and eigenfunctions of H; are known as

Hotby = EJir.

@ The eigenvalues and eigenfunctions of H can be expressed as
E=EFE0 4+ FO L F@ . ..

and
U = Zamw,(,)n, with a, = a® +all) + a2 4 ...



Nature of PSS: perturbative or not

Perturbation theory (lI)

@ For the state k,

a. Oth order approximation

EO =g a9 —=5_.

b. 1st order approximation

S k
E(l) = Wkk; ag) = EE — E,977 m ?é ’
0, m =
c. 2nd order approximation
( Wkk ka ! Wmn Wnk
— k
GEE:: *Z E-EE -y "k

2 /Wkank 2
E():ZW’ S

——Z/ Wk" m = k.

d. 3rd order approximation



Nature of PSS: perturbative or not

Perturbation theory (I

@ Whether < 1 or not determines whether the perturbation term is small as

mk
0
By — Ep . | . |
well as the speed of convergency, since the eigenvalues and the eigenfunctions are

expanded in powers of these quantities.

@ Dirac Hamiltonian is divided into two parts, followed by [Ginocchio:1997,2005]

Y+M —Z+5 0 0
H:HOSS—l—WSS: | dr r +
44t Ng—M 0 Ag— A
d K
H:Hg)SSJrWPSS: ZOJFM —dr T X 2—290 7
445 _AN-M 0 0

with constant numbers Ay and 2.



Nature of PSS: perturbative or not

Potentials for the symmetry limits
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Nature of PSS: perturbative or not

Validity of perturbation theory
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@ Even though it is clearly shown that
X — 3o < [Ag— Al

it should be noticed that

Therefore

WS > W3

Liang, Zhao, Zhang, Meng, Giai, PRC 83, 041301(R) (2011)

@ SS: the biggest perturbations ~ 0.06 = valid

@ PSS: the biggest perturbations ~ 0.6 = questionable




Nature of PSS: perturbative or not

Restoration of symmetries in single-particle energies

Mg, Spin doublets -
oia [ 7 . % Single-particle energies of spin doublets k = 1f
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@ SS: the energy degeneracy can be well restored by the 2nd order perturbation
calculations.

@ PSS: the restoration of the energy degeneracy cannot be restored up to the 3rd order
perturbation calculations.




Nature of PSS: perturbative or not

Potentials for the RHO symmetry limit

@ Symmetry breaking from (relativistic) harmonic oscillator
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Nature of PSS: perturbative or not

Validity of perturbation theory and restoration of symmetries
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Liang, Zhao, Zhang, Meng, Giai, PRC 83, 041301(R) (2011)



Nature of PSS: perturbative or not

Restoration of symmetries in single-particle wave functions
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N @ The wave functions in the RHO
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g F - calculations.

The nature of PSS is indeed perturbative, regarding the Dirac Hamiltonian with RHO
potentials as the symmetry limit.
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PSS in SUSY

Intruder states in PSS

@ Spin symmetry (SS) breaking, i.e.,

remarkable spin-orbit splitting in 2 5 = =
P g _ = - 5/2
. 312 13/2
(n,l,j=1+1/2) — 825 = i
o 112 " 82 112 9/2
112 32 iz
Haxel:1949, Mayer:1949 == 312 577 1172
2 = 52 =
5/2 50 7/2
. . . _ 912
@ Pseudospin symmetry (PSS), i.e., 2w = 2z
near degeneracy in B 28 o
1 / 2 o / 3 2 1/2 3/2 e 20 1/2
(n T Y —i_ 7./ T + / ) — == z 5/2
(nalaf:/+1/2) a2 %% 8
3/2
by defining 112 32 2. 112
(h=n—-11=14+1j=1+£1/2) s pdfghii spdfFgh i

Arima:1969, Hecht:1969

@ The intruder states do not have their own pseudospin partners.




PSS in SUSY

Intruder states in PSS

@ Spin symmetry (SS) breaking, i.e.,

126
remarkable spin-orbit splitting in o — = =
. 312 3/2
(n,1,j=141/2) _ e = z =
VA 1 7/2 82 12 9/2
iz 3/2 <
Haxel:1949, Mayer:1949 == 312 5o 1112
=i == o -
50 7/2
. . _ > 912
@ Pseudospin symmetry (PSS), i.e., 2w = &
: 32 ==
near degeneracy in 28 o
1. /42 i—=[]213/2 12 3 72 20 112
(n T ) —l_ 7../ T + / ) == ; 5/2
(nvla./:/—l_]-/Q) a2 8
3/2
by defining 12 32 2 102
(h=n—-1,1=14+1j=1+£1/2) s pd f g hi s pdfgh i

Arima:1969, Hecht:1969

@ The intruder states do not have their own pseudospin partners.

= Supersymmetric (SUSY) quantum mechanics

Leviatan, PRL 92, 202501 (2004); Typel, NPA 806, 156 (2008)




PSS in SUSY

SUSY quantum mechanics (1)

@ Every second-order Hamiltonian can be factorized in a product of two Hermitian
conjugate first-order operators Infeld:1951, Cooper:1995

H, =B "B".
@ The Hermitian operators ); and @, called supercharges read
0 BT . 0 —iB*
Ql:(B O)’ Q2ZIQ17'—<I-B 0 )

@ The supersymmetric Hamiltonian

Hy 0O
H5:Q12:Q§:(01 H2)

is obtained with the supersymmetric partners

H, = B"B~ and H,= B B™.



PSS in SUSY

SUSY quantum mechanics (II)

@ Since Hs is the square of the Hermitian operators @Q;, all eigenvalues Es(n) of the
eigenvalue equation are non-negative

H5\|15(n) = Eg(n)\lfg(n)

with the two-component wave function
th1(n) )
Vs(n) = :
s(n) (wz(”)

@ H; and H, have the same spectrum of positive energies Es(n) > 0.

@ Operators B and B~ connect the components of the wave function by

B~ B*
Es(n)wl(n), i(n) = Eo(n)

Waln) = a(n).



PSS in SUSY

SUSY quantum mechanics (lII)

@ The supersymmetry is called exact if there is an eigenstate Ws(0) with energy
Es(0) = 0.

@ As usual convention, this ground-state obeys

B41(0) =0, (0) =0,

i.e., H; has an additional state at zero energy that is not appearing in H,.

H, H, H, H,

exact SUSY broken SUSY



PSS in SUSY

Schrodinger equations without spin-orbit term

@ Starting point: Schrodinger equations without spin-orbit term

[—ﬁw + V(r)] ih(r) = Ex(r).

@ For the spherical symmetry,

HR,(r) = E;R,(r)

with the Hamiltonian and wave functions
Ra(r)

d? k(k+ 1) | ra
 2Mdr? i 2 Mr? + Vi), Palr) = r Qfm(r),

where k = F(j + 1/2) for j = | - 1/2 as adopted in the relativistic framework.

H —

@ H has an explicit spin symmetry (SS).

@ To investigate the pseudospin symmetry (PSS) and its breaking, the critical point is
to identify the /(] + 1) = r(x — 1) term.

@ One of the promising tricks is the SUSY quantum mechanics. Typel, NPA 806, 156 (2008)




PSS in SUSY

SUSY for Schrodinger equations (1)

@ SUSY for Schrodinger equations without spin-orbit term
d? k(k +1)

H=— vV
o " omz V)
@ Two Hermitian conjugate first-order operators
d 1 1 d
R PP I Iy )
=3 B 7 | g
@ SUSY partner Hamiltonians
1 [ d? |
H:B+B—:_ 0 2 /
1= BB = oy Tan T T @)
Hy — BB — — _—d—2+Q2+Q’_
PTOTRTE TOM | dr2 T ]




PSS in SUSY

SUSY for Schrodinger equations (11)

@ Furthermore, setting the reduced supermomenta

K
qx(r) = Qu(r) — P
so that the SUSY partner Hamiltonians read
1 [ d° k(k+1) 2K |
H, = BfB- = — | — 2+ g, —q
1 KR K 2M ] dr2 —|_ r2 —l_ q/—@ —|_ q q/{_ )
1 d*>  k(k—1) 2K |
H, = BB = — | — 2+ q.+4q
2 K K QM_ dl’2—|_ r2 +q. t I’q _|_q/£_

@ The centrifugal barrier term x(x + 1) leading to SS appears in Hj.

@ The pseudo-centrifugal barrier term x(x — 1) leading to PSS appears in H,.




PSS in SUSY

Energy shifts

@ H and H; are connected by
Hi(k) + e(k) = H

with the energy shifts e(x) to be determined.

@ It is equivalent that
1 |, 2K

X q.(r) + T%(r) — q,.(r)| +e(k) = V(r),
so that g.(0) = 0 and lim, .5 g.(r) = ZM((fE’;)K_)V)r with regular potential V/(r).

e Energy shifts for PS doublets (x + ' = 1)
x For k < 0, since the exact SUSY is achieved, it is required E1(x) = 0, i.e.,

e(k) = Eyy.

*x For k > 0, to fulfill lim, . g.(r) = lim, .o q,/(r), it is required Typel:2008

e(k) =2 V| _,— e(K).



PSS in SUSY

Exact PSS limits

o The exact PSS limits indicate £,.,, = E(,_1),,, it is required

Hy(k1) + e(k1) = Ha(ko) + e(k2),

@ Since q.(0) = 0, this leads to g.,(r) = g.,(r), and finally

A _
Gry(r) = Gy(r) = SWlstm} ! with constants A = 2M, wy,, .1 = e(r1) e(/fz)_
Ko — R

@ This indicates the only possible PSS limits in the Schrodinger equations without

spin-orbit term are those with harmonic oscillator (HO) potentials

A
Viro(r) = Zw%m,@}rz + V(0).

~ ~ D ~
cf. H= Hyo + V//l2 +vil-s; H= Hyo + vyl + (4V// — V/5)| - S Bohr:1982
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Single-particle energies and pseudospin-orbit splittings

10 — 1 v 1 ' T ' T T 1 1.0 J J J ' J
0 i 132
[ — - . sl = Sn neutron _
-10 |- _ ) . - .
L J % ®
20 — — B E 0.6 \
2 30F - T i v
= 40 | -' S —E=—p
(é) [ — . i >;\ 04 - _._a ‘ .
= 50} __d - W —A—§
P ' & o02f Vg -
60 - ¢ 132 - w i A
: Sn neutron - | |—¢—h )
70 | - .
2 l 2 l 2 l 2 l 2 l 2 o.o [ | [ | [ | 2 | 2
0 2 4 6 8 10 12 -50 -40 -30 -20 -10 0

r (fm) (Ej t Ei>)l2 (MeV)

x Left: Woods-Saxon potential for *’Sn and bound single-neutron energies.
Right: pseudospin-orbit splittings (£;_ — EJ>)/(27 +1)vs (E_+E.)/2

Liang, Shen, Zhao, Meng, PRC 87, 014334 (2013)

@ How to understand the amplitudes of PSS splittings?

@ Why do pseudospin-orbit splittings A Epgo decrease as single-particle energies E.

increase?




PSS in SUSY

Single-particle wave functions

Normal representation

1-0 ) l ) l ) l ) l ) l )

0.5 |-

132
- Sn neutron -

_1.0 1 | 1 | 1 | 1 | 1 | 1
0 2 4 6 8 10 12

r (fm)
* Single-particle wave functions of the 3s; 5, 2d3/5, 2d5 ), and 1g7/, states.

@ Wave functions of spin doublets are exact the same since there is no spin-orbit term.

@ However, wave functions of the PS doublets are very different to each other, so it is

difficult to analyze the origin of PSS and its breaking.
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Implicit PSS limit: Schrodinger equations with HO potentials

10 L L
0 Vi

@ Hamiltonian can be divided as or ’
20 -
HO HO s of ]
H — HO —|— W 2 -40 -_ _-
> L -
50 |- -
* H{'© leading to PSS 60 |- .
HO : ' OFE_ -7 ! | | | ]

* 1 1 1 1 1 1
W™ symmetry breaking potential : . . . )

r (fm)

Hy'© = : [

B d> k(k+1)] A
2M

A 229
dr? v r? i 4w r+ V()
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Validity of perturbation theory and perturbation corrections

10° T T T ' -18 T ] ] ] ]
HO HO i HO HO
. H=H0 + W .20_H=H0 + W -
1
10 l ‘ ' B — L e e e e e 3s
— - 22 | . 12
Lu¥ - J _ T e 1 o ¢ — 2d
e 107 \ 3 24 - & 2d, -
Og . 351/2 l ; é i 512 |
S i ” I -
= 10 A 2d v I f— 1
v 2d,, 28 | e T 9712
10° A . L H° 1st 2nd  3rd  H
-50 0 50 100 150 -30 ' ' ' ' '
E, -E, (MeV)

Liang, Shen, Zhao, Meng, PRC 87, 014334 (2013)

@ The biggest perturbations ~ 0.13.

@ Pseudospin-orbit splittings are reproduced by the 3rd-order perturbation calculations.

The nature of PSS is perturbative, and its breaking can be understood in such implicit way.\




PSS in SUSY

Reduced supermomenta

SUSY representation ﬁ q2(r) + 2T/<g%(r) —q.(r)| +e(r) = V(r)
400 — 1 v T ' T ' T ' 17
350 |

132
I Sn neutron

300
250
200

q (MeV/c)

K

150
100
50

0 [ [ [ [ [ [

0 2 4 6 8 10 12
r (fm)

* Reduced supermomenta g, (r) for the s; 5, d3, ds )2, and g7/, blocks.

@ q,.(r) are block-dependent.

@ Asymptotic behaviors: lim, .o q.(r) = QM((leg)ﬁ_)V)r and lim, . q.(r) = \/—2Me(/-<;).
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Central potentials in SUSY partner Hamiltonians

10 ' 1 ' 1 ' 1 ' 1 ' 1 ' 10 ' 1 ' 1 ' 1 ' 1 ' 1
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% Central potentials \N/,{/(r) in H=H, + e(x) for the By /o, P30, 17'5/2, and ?7/2 blocks.

Liang, Shen, Zhao, Meng, PRC 87, 014334 (2013)

o V.(r)=V(r)+ q.(r)/M are regular and block-dependent.

@ Asymptotic behaviors: lim,_ \N/,{(r) =V + % and lim,_. \N/,Q(r) = 0.
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Single-particle energies of SUSY Hamiltonians

132 132

10 Sn neutron 10 - Sn neutron
S o} . S o}
[) N ) L
S g0 S o0}
> I > L
(o] (o]
5 -20 |- - - o -20 |-
S - - - S -
P =30 |- o -30 |-
€ 40} £ 40}
1+ — — 1+
2 - - - o I -
2 -50 |- o -50 |
g I — 2 i
‘w60 - N N ‘s 60 |- . .

70 L H H H H 70 L H H H H

S1/2 d3/2 d5/2 g7/2

* Single-particle energies of both H and H for the S1/2, d3/2, ds/», and g7 /> blocks.

o H and H have identical spectra, expect an additional eigenstate with £, = 0,

corresponding to the states without pseudospin partners.

@ The pseudospin-orbit splittings AEpgo can be explicitly understood as the splitting

appearing in H with the SUSY representation.
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Single-particle wave functions in

@ Wave function transformation: »(n) = \/%%(n)

1-0 ) ' L) ' L) ' L) ' L) ' L) 1-0 ] l L) l L) l L) l v l
0.5 |
=.E :.E 0.0
mE b =
0.5 | - 0.5 | -
132 132
Sn neutron - Sn neutron -
_1.0 [ | [ | [ | [ | [ | [ _1.0 [ | [ | [ | [ | [ |
0 2 4 6 8 10 12 0 2 4 6 8 10 12
r (fm) r (fm)

* Single-particle wave functions in H and H of the 2P1/2, 2P3/2, 1E/2, and 11?7/2 states.

@ Single-particle wave functions of PS doublets are almost identical to each other.

@ It is a natural result as they are quasi-degenerate.
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Explicit PSS limit: symmetry conserving and breaking terms

10 — 1 T ' T T 1
@ SUSY Hamiltonian can be divided as 0 :
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= - ]
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* symmetry breaking term r(fm)
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= .
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> - -
@ This is why AEpgo decrease as main 1.0 - m—
. 1.5 |- —_—F -
quantum numbers n increase. I
4 2.0 | | | | |

Liang, Shen, Zhao, Meng, PRC 87, 014334 (2013) r (fm)



PSS in SUSY

General pattern of PSO splittings

0-5 L] I L] I ] I L) I L) I L) 0-6 L] l v l L] l L] l L] l L]
—1 T L 132 —1p,, -
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12 7 0 4 N - -2p112
. _ 0 -3
1/2 E 12 |
— 7 >
< (<)
£ . = -
s e
~if 7 yiF ]
' ?
- = /_,/""'
..... _0'2 2 ] 2 ] 2 ] 2 ] 2 ] 2
12 0 2 4 6 8 10 12
r (fm) r (fm)

% Left: Rz(r) for the 15, /2, 2p1/», and 3p; /» states.

Right: /1\~/pso(r)f~?2(r) for the 1p; 5, 2p1 2, and 3P ), states.

@ main quantum numbers 1 increase = wave functions R(r) move outward
= Epgo = f/i\N/pSO(r)fez(r)dr decrease
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Validity of perturbation theory and perturbation corrections

'18 l l l l l 1.0 T | T | T | T |
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@ Pseudospin-orbit splittings are reproduced by the 1st-order perturbation calculations.

Conclusions
The nature of PSS is perturbative. In the SUSY representation H:

* Both single-particle energies and wave functions of PS doublets are quasi-degenerate.

% WPSS can be explicitly identified.

+ Shape of W = AFEpgq decrease as main quantum numbers n increase
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Summary and Perspectives

Summary
% We deem it promising to understand PSS and its breaking mechanism in a fully

quantitative way by combining the similarity renormalization group (SRG) technique,

SUSY quantum mechanics, and perturbation theory.

v" SRG: to transform the Dirac Hamiltonian into a Schrodinger-like form yet keeping all

operators Hermitian.

v" SUSY: to identify the PSS conserving and breaking terms naturally; to clarify the

reason why the intruder states have no pseudospin partners.

v" Perturbation theory: to understand the behavior of pseudospin-orbit splitting in a

quantitative way.

Perspectives
?" Schrodinger equations with spin-orbit term

?" Dirac equations and/or Schrodinger-like equations

? Why AEpso < AEg in realistic nuclei?
?/
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