Two-neutron correlations in the ground and excited states of ⁶He

> Yuma Kikuchi (Spin-isospin Lab.) in collaboration with K. Ogata, T. Matsumoto, and K. Minomo

Exotic n-n correlation in two-neutron halo nuclei

- Two-neutron halo nuclei have been studied based on core+n+n three-body model.
 - □ The results of three-body models show that:
 - □ A correlation between halo neutrons has an important role in their binding mechanisms.
 - □ This correlation is characterized as a spatially-correlated n-n pair, the so-called "dineutron."

Coulomb breakup reactions as a tool to investigate the dineutron

- Coulomb breakup reactions have been performed to investigate the exotic structure of two-neutron halo nuclei and their electric response.
 - □ The low-lying enhancements are observed in the cross sections.
 - □ This enhancement has been expected to be useful to investigate the ground-state structure.
 - □ The shapes of the cross sections are governed by strong FSIs.
 - □ It is difficult to extract the information on the ground-state structure from the Coulomb breakup cross sections.

Coulomb breakup reactions as a tool to investigate the dineutron

- Coulomb breakup reactions have been performed to investigate the exotic structure of two-neutron halo nuclei and their electric response.
 - □ The low-lying enhancements are observed in the cross sections.
 - □ This enhancement has been expected to be useful to investigate the ground-state structure.
 - □ The shapes of the cross sections are governed by strong FSIs.
 - □ It is difficult to extract the information on the ground-state structure from the Coulomb breakup cross sections.

Invariant mass spectra for ¹⁰Li subsystem

We cannot identify the p-wave resonance in the spectra, while the ground state has comparable components of p-wave to that of s-wave.

Coulomb breakup reactions as a tool to investigate the dineutron

The dineutron is also discussed in terms of cluster sum rule of E1 transitions.
 The cluster rule value of E1 transition is expressed as

$$B(E1) = \frac{3}{4\pi} \left(\frac{Ze}{A}\right)^2 \left\langle r_1^2 + r_2^2 + 2r_1r_2\cos\theta \right\rangle$$

and depends only on the ground-state structure.

□ For ¹¹Li, the opening angle between two halo neutrons is determined as $\theta = 48^{+14}$ -18 deg. T. Nakamura et al., PRL 96, 252502 (2006).

However, in our previous work, we show that the sum rule value is reduced by ~15 % by taking into account the core excitation effect in the case of ¹¹Li.
K et al., PRC 87, 034606 (2013).

□ The careful analysis is required to obtain the quantitative results.

What kinds of reactions is helpful to understand the dineutron?

- To investigate the dineutron more in detail, the other kinds of reactions than the Coulomb breakup reaction is needed.
- □ We here consider the following two reactions:
 - □ Nuclear breakup reaction of ⁶He
 - □ In the reaction, the excited resonant state, 2⁺, is populated.
 - □ The 2⁺ state has a similar single-particle configuration to g.s., and hence, we can learn about the n-n correlation in the excited states.
 - Quasi-free knockout reaction ⁶He(p,pn)
 - In the quasi-free condition, the knocked-out neutron is free from FSIs.
 This fact might overcome the problem in the Coulomb breakups.
 This reaction is one of the possible candidates for the direct measurement of dineutron.

Nuclear breakup reaction of ⁶He to investigate the dineutron in the excited state 2⁺1

YK et al., PRC 88, 021602 (2013).

Breakup reaction of ⁶He by ¹²C @ 240 MeV/nucleon

- □ The cross section of the ⁶He breakup reactions by ¹²C shows the peak coming from the 2⁺₁ state of ⁶He, which cannot observed in the Coulomb breakup.
 - We can learn about structure of the excited state of two-neutron halo from this kind of reactions.
 - \Box The 2⁺₁ has a similar single-particle configuration to g.s. of $(p_{3/2})^2$.
 - □ There exists the dineutron correlation in excited resonant states?

T. Aumann et al., PRC 59, 1252 (1999).

Breakup reaction of ⁶He by ¹²C @ 240 MeV/nucleon

- □ To investigate the structure of 2⁺₁ state of ⁶He, we need to clarify the decay modes of the state.
 - **The** 2_{1}^{+1} state is located above the thresholds of α +n+n and 5 He(3/2)+n.
 - □ Which is dominant decay mode? sequential or genuine three-body decay?

Model: core+n+n three-body model for ⁶He

Hamiltonian

$$\hat{H} = \sum_{i=1}^{3} t_i - T_{\text{c.m.}} + \sum_{i=1}^{2} V_{\alpha N}(\mathbf{r}_i) + V_{NN} + V_{\alpha NN}$$

where $V_{\alpha N}$: KKNN potential, V_{NN} : Minnesota force

□ We introduce the phenomenological three-body potential to reproduce the observed S_{2n}.

□ Wave functions

$$\Phi_{\rm gs}(^6{\rm He}) = \Phi_V + \Phi_T$$

 We solve the relative motions of the α+n+n three-body system with GEM.

Model: Continuum-discretized coupled-channel (CDCC) method

□ To describe the scattering problem between ⁶He and ¹²C, we use CDCC.

- □ We take into account the coupling to continuum states by solving the coupled-channel equation between the discretized pseudo states.
- □ The pseudo states are calculated within the L²-basis functions by diagonalizing the Hamiltonian for the ⁶He projectile.

□ We here consider the 0⁺, 1⁻, and 2⁺ states for pseudo states.

Model: Double-differential breakup cross sections (DDBUX)

- \Box We here calculate the DDBUX as functions of relative energies in the α +n+n three-body system.
 - To obtain DDBUX as functions of continuous energies, we need the smoothing function.

$$T = \langle \psi^{(-)}(\mathbf{k}, \mathbf{K}) \chi^{(-)}(\mathbf{P}) | V | \Psi^{(+)} \rangle$$

$$\approx \sum_{n} \langle \psi^{(-)}(\mathbf{k}, \mathbf{K}) | \Phi_n \rangle \langle \Phi_n \chi^{(-)}(\mathbf{P}) | V | \Psi^{(+)} \rangle$$

ⁿ smoothing func. CDCC T-matrix

Results: Double-differential breakup cross sections (DDBUX)

DDBUX in two types of Jacobi coordinates

- Both of DDBUX show the ridge structure at total energy of ⁶He as ~ 1 MeV.
 The shapes of DDBUX show the dominance of the excitation to 2⁺₁.
- To investigate the decay mode, we next calculate the invariant mass spectra (IMS) for binary subsystems.

Results: Correlations in binary subsystem & decay modes

- To clarify the decay modes of 2⁺₁, we calculate the IMS by gating on the total energy as 0.98±0.135 MeV, which corresponds to the resonance energy and decay width of the 2⁺₁ state.
 - From the result of α-n, we find that the sequential decay via ⁵He resonance is suppressed.
 - **\Box** The result shows that the decay of 2^{+1} state is a genuine three-body decay.

Results: Correlations in binary subsystem & decay modes

- To clarify the decay modes of 2⁺₁, we calculate the IMS by gating on the total energy as 0.98±0.135 MeV, which corresponds to the resonance energy and decay width of the 2⁺₁ state.
 - The IMS for n-n shows two peaks: The 1st peak comes from the n-n FSI and the 2nd one seems to be free from FSI.
 - □ The 2nd peak shows the back-to-back emission of two neutrons.
 - ➡ The resonance energy is almost exhausted by the n-n relative motion.

Results: Correlations in binary subsystem & decay modes

- To clarify the decay modes of 2⁺₁, we calculate the IMS by gating on the total energy as 0.98±0.135 MeV, which corresponds to the resonance energy and decay width of the 2⁺₁ state.
 - The IMS for n-n shows two peaks: The 1st peak comes from the n-n FSI and the 2nd one seems to be free from FSI.
 - □ The 2nd peak shows the back-to-back emission of two neutrons.
 - ➡ The resonance energy is almost exhausted by the n-n relative motion.

The 2nd peak could be a signature for the spatially-localization of neutron pair. 8 Total Total 7 7 Res. Res. $d\sigma/d\epsilon_{\alpha-n}$ [mb/MeV] dơ/dɛ_{n-n} [mb/MeV] Non-res. 6 6 Non-res. 5 5 no effect of FSI 4 4 3 3 2 2 0 0 0.2 0.8 0.4 0.6 1.2 1.4 0 0.2 0.6 1.2 1 0 0.4 0.8 1.4 ε_{α-n} [MeV] ϵ_{n-n} [MeV]

Neutron knockout reaction of ⁶He to investigate the dineutron in the ground state

Quasi-free knockout reactions for ⁶He

The problem in Coulomb breakups is dominance of FSIs.

- **FSIs disturb to extract the information on the g.s. structure from the data.**
- To investigate the ground-state structure more in detail, we need to select the reactions, in which the effects of FSIs are minimized.

□ We here consider the quasi-free neutron knockout reaction ⁶He(p,pn).

- □ In the quasi-free condition, the knocked-out neutron is free from FSIs.
- □ However, the residual nucleus ⁵He is unbound due to Borromean nature.
- □ How the process via ⁵He resonance impact on the knockout reaction?

Model: Knockout reaction using sudden approximation

□ As first step, we use the simple model in calculating the knockout reaction.

- □ We here use the sudden approximation in the present calculation.
 - □ The (p,pn) part is treated by the simple momentum-transfer operator.
 - □ The scattering wave of the knocked-out neutron is described by a plane wave.
- **D** To estimate the effect of the process via ⁵He resonance on the reaction, the exact scattering states of α +n system for the residual part.
- The T-matrix for the knockout reaction is given as

Model: Ground-state momentum distributions

Momentum distribution and angular correlation in the ground state of ⁶He
 In both distributions, the peaks are seen at the region of large angle.
 These indicate the dineutron in the ground state.

Results: Angular correlations in knockout reactions

U We calculate the angular correlation in the knockout reaction.

- □ The calculated distribution shows the two-peaked structure.
- However, in the result for knockout reaction, the 2nd peak, corresponding to the dineutron, is reduced compared to the ground-state distribution.
- □ The process via ⁵He changes the angular correlation, especially for the dineutron part.

Results: Effects of process via ⁵He resonances

□ What happens by taking into account the process via ⁵He resonance?

- □ Inclusion of the process via ⁵He resonance, the momentum distributions is concentrated on the momentum region corresponding to ⁵He(3/2⁻).
- □ The process via ⁵He resonance drastically changes the angular correlation.
- Next, to minimize the effect of such as process, we select the off-resonance region in calculating the angular correlations.

Results: Angular correlations in off-resonance region

Lower and higher momentum parts of off-resonance region

- □ The lower part, which corresponds to the surface region of ⁶He, shows the strong enhancement at large angle.
- This indicates the dineutron configuration in the ground state of ⁶He. \Box The higher part, on the other hand, shows the signature of cigar-like one.

Angular correlation (w/ FSI)

Results: Angular correlations in off-resonance region

□ Lower and higher momentum parts of off-resonance region

- □ The lower part, which corresponds to the surface region of ⁶He, shows the strong enhancement at large angle.
- ➡ This indicates the dineutron configuration in the ground state of ⁶He.
 □ The higher part, on the other hand, shows the signature of cigar-like one.

By measuring the lower momentum part of off-resonance region, we can see a clear evidence of dineutron.

Summary

- □ To investigate the dineutron in the ground and excited states of ⁶He, we investigated two types of reactions.
 - For the excited state, we calculated the breakup reaction by ¹²C at 240 MeV/nucleon, in which the 2⁺₁ state is populated in final states.
 - We clarified the decay mode of 2⁺₁, and found that the genuine threebody decay is dominant in the decay from 2⁺₁.
 - □ The IMS for n-n shows the specific back-to-back emission of two neutrons, which can be a possible signature of dineutron.
 - □ For the ground state, we calculated the quasi-free knockout reaction.
 - □ We found that the process via the ⁵He resonance drastically changes the angular correlation in the knockout reaction.
 - By selecting the off-resonance region in calculating the angular correlations, we can see a clear signature of dineutron as a huge enhancement at large angle.