

New Θ⁺ results from LEPS

Takashi NAKANO RCNP, Osaka University 2013, Jan. 25th, Riken-Wako

- Introduction
- Experiment
- Inclusive analysis Blind analysis
- Exclusive analysis
- Summary

Prediction of the Θ^+ Baryon

<u>Important Q.</u>: if $N_c \rightarrow \infty$ which is smaller, $\frac{m_s}{\Lambda}$ or $\frac{1}{N_c}$?

the answer:

splitting inside SU(3) multiplets is $\sim m_s$, numerically ~140 MeV

splitting between the centers of multiplets is ~ Λ / N_c , numerically ~ 230 MeV.

Hence, $m_s \leq \Lambda / N_c$ meaning that one can first put $m_s = 0$, obtain the degenerate SU(3) multiplets, and only at the final stage account for nonzero m_s , leading to splitting inside multiplets, and mixing of SU(3) multiplets.

Diakonov' seminar@RCNP, 2012/10/10

How does baryon spectrum look like at $N_c \rightarrow \infty$?

E. WittenE. Jenkins and A. ManoharT. Cohen and R. Lebed

(imagine number of colors is not 3 but 1003)

Witten (1979): Nc quarks in a baryon can be considered in a mean field (like electrons in a large-Z atom or nucleons in a large-A nucleus).

Lowest one-quark excitations

The two lowest baryons resonances that do not belong to the ground-state (8, $\frac{1}{2}$), (10, 3/2), are SU(3) singlets $\Lambda(1/2^-, 1405)$, $\Lambda(3/2^-, 1520)$.

They can be explained if there are two **s**-quark levels with $J^P = 1/2^-, 3/2^-$

Off-diagonal "Gamov – Teller" transitions

In the large Nc limit, these excitations induce two `towers' or `bands' of rotational states, but at Nc = 3 they reduce to two single rotational states: (1, 1/2) and (1, 3/2).

Diakonov' seminar@RCNP, 2012/10/10

Exotic 5-quark charmed baryons B_c^{++} , B_c^+ are light (~2420 MeV) and can decay only weakly:

$$B_c^{++} \rightarrow p\pi^+, p\phi\pi^+, \dots B_c^+ \rightarrow \Lambda K^+, \text{etc.}$$

clear signature, especially in a vertex detector. Life time $10^{-13} s$

Diakonov' seminar@RCNP, 2012/10/10

 $B_c =$ "Beta-sub-c"

NB: $\Theta_c = uudd\overline{c}$ is another pentaquark, hypothetized by Lipkin and Karliner; in our approach it must be ~350 MeV heavier!

There is also a Gamov-Teller-type transition:

exotic 5-quark charmed baryons

Previous result of the O⁺ search by LEPS

- •It should be reproducible.
- •It should appear in M(nK⁺).
- •It should not appear in M(nK⁻) nor in M(pK⁺).
- •Fermi-motion correction should work.

Experiment@SPring-8/LEPS

Upgrade since previous experiment

- •Two laser injection system to increase beam intensity.
- •5W Ar laser \rightarrow 8W solid state laser (Paladin by Coherent company).
- •Beam intensity of $1 \rightarrow 2$ Mcps was achieved at the maximum.
- About 2.6 times statistics was collected in 2006-2007.

LEPS forward spectrometer

• The same setup for Common 2006-2007 data.

Symmetric acceptance for positive/negative charged particles.

symmetric acceptance for K^+ and K^- from $\Theta^+/\Lambda(1520)$ production.

Search for Θ⁺ in Fermi-motion corrected K⁻ missing mass

missing momentum

Minimum Momentum Spectator Approximation (MMSA):

Assume possible minimum momentum configuration for the spectator. For the further improvement

In the previous analysis, only inclusive analysis was carried out.

Separation of the two types of K⁺K⁻ events from neutron and proton largely improves the signal sensitivity.

simple MMn(γ,K⁻)X: 30 MeV/c² M(nK⁺) by MMSA :11 MeV/c² (16 MeV/c² for Λ(1520))

Inclusive Analysis

- New data was taken in 2006-2007 with almost the same setup.
- Blind analysis was applied to check the previous result. (Selection cut is not changed from previous analysis. calibration fixed before opening the box)

Comparison of the Λ(1520) peak

Is there any problems on new data?

Is it possible to add two data sets?

•Λ(1520) peak was found to be consistent for two data sets.

<u>Other checks: φ events</u>

We decided to add two data sets after opening the box.

The significance is less than 2σ if we perform the same shape analysis as the previous analysis.

Consistency check of final M(NK⁺) spectrum

New data previous data

Two data sets are normalized by the entry.In total, two data sets are consistent.

The increment of the χ^2 from the best fit in the space of peak height and position of signal.

 \rightarrow almost 3 σ deviation from two data sets.

Unlikely to happen \rightarrow Overestimation of significance by shape analysis. The background shape must be the same! 15

 $\Lambda(1520), \phi, \dots$

Start counter

Light collection is not good near the edge of the counter.

 \rightarrow Efficiency was estimated by using both LH₂ and LD₂ data $_{17}$

$LH_2 p(miss) vs. p(dEdx) LD_2 p(MMSA) vs. p(dEdx)$

Proton detection by using dE/dx in Start Counter

M(NK⁺) for exclusive samples

Counts/12.5 MeV

80

70

60

50

40

30

20

10

100

1329

1.636

0.9612E-01

Entries

Mean

RMS

- Peak is seen in tagged events for the previous data while not seen in the new data.
- •An enhancement is seen in proton rejected events in the both data.

Exclusive samples for summed data

Proton rejected Proton tagged 200 MeV ID 100 Counts/12.5 MeV **500** D 200 2785 Entries Entries 4645 Mean 1.641 1.636 Mean ____ 175 ____ 175 ____ 150 reliminary RMS 0.8336E-01 RMS 0.9541E-01 reliminan Counts, 125 100 75 100 50 50 25 0 Lure 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 $M(nK^{+}) (GeV/c^{2})$ $M(nK^{+}) (GeV/c^{2})$

- Structure seen in proton tagging becomes much smaller.
- Enhancement is seen in proton rejected events.
 - \rightarrow Further rejection of the proton events.

Neutron enhanced sample

Polarization dependence of the M(nK⁺)

Horizontal

Vertical

B.G strength strongly depends on the beam polarization.

Pol. dependence of inclusive spectra

Horizontal

Vertical

Origin of polarization dependence

The spectrometer acceptance has approximately rectangular shape.

If K⁺ and K[−] prefer to fly parallel to the polarization, the acceptance difference cause the difference of the strength → Suggesting non-resonant KK has p-wave component

Schematic explanation of MC-based exclusive analysis

Note: the fluctuation at 1.53 GeV/c² in M(pK⁺) in the previous data is removed.

Fitting proton-tagged events

φ and non-resonant KK Λ(1520) Λ(1405) Summed

- Extended maximum-likelihood un-binned fit.
- M(pK⁺), M(pK⁻), cos(Θ) of K⁺ are simultaneously fitted.
- Ratio of φ to non-resonant KK is determined from M(KK).
- •Λ(1405) to explain threshold enhancement of M(pK⁻)
- • χ^2 /ndf is close to one.

- 1. Ratio of estimated proton contribution to the neutron contribution for the full data sample \rightarrow 4616/2831 = 1.61
- Ratio of tagged proton contribution to the neutron contribution for the sample with vtz cut (proton tagging efficiency of 0.9 was taken into account)
 - → 1770/1119 = **1.58**

M(nK⁻) distribution

✓ The peak did not appear in M(nK⁻)

M(nK⁺) distribution

✓ The peak appeared in M(nK⁺)

Downstream(vtz>-980 mm)

Upstream (vtz<-980 mm)

✓ The peak appear in high proton-leakage region.

Fermi-motion correction by MMSA

✓ MMSA worked for Λ (1520)

Fermi-motion correction by MMSA

Fermi-motion correction by MMSA

✓ MMSA worked for Θ^+

New data (2006-07)

✓ The peak appeared in the new data.

Previous data (2002-03)

✓ The neutron spectrum is not much different from that of the new data. n and p(leaked) subtracted

Counts/12.5 MeV

<u>Comparison of the previous</u> and new results

<u>M(nK⁺) distribution of</u> <u>the summed data</u>

- We are now trying to understand background processes.
- Data taking with a large start counter is on going.

Pol. dependence

MC (black) vs. Data (red): All (left column) – After cuts (right column)

K+ K- events in the f tail region are polarized and probably in p-wave.

LEPS2 Facility

LEPS2 Detector

B=1 T : $\Delta p/p \sim 1\%$ for $\theta > 7^{\circ}$

RPC ToF time distribution

>3 σ K/ π separation @1.1 GeV/c²

Constructed by RIKEN

Exp. hall was constructed. (2010.Oct-2012Jan)

0

Installation of the E949 magnet (2011.Nev-Dec)

Helped by RIKEN

γ counters were installed. (2012.June)

Beam pipe (2012.May)

Comparison of LEPS and LEPS2

	LEPS	LEPS2	
Beam Intensity (~2.4 GeV)	2~3x10 ⁶ (2 lasers)	<10 ⁷ (4 high-power lasers)	
Beam Intensity (~2.9 GeV)	2~3x10 ⁵ (2 lasers)	<10 ⁶ (4 high-power lasers)	
Polarization	Linear/Circular	Linear/Circular	
Detector Area	42m ² x 3m(h)	198m² x 10m(h)	
Charged Particle Acceptance	0~30 degrees	7~120 degrees	
Momentum Resolution	0.5% (for 1-GeV kaon)	1~1.5% (for 1-GeV kaon)	
Photon Coverage	none	30~110 degrees	

We expect to have the first beam at LEPS2 on January 27th.

<u>Summary</u>

•The Θ^+ is studied via $\gamma d \rightarrow K^+K^-pn$ reaction with high statistics data at SPring-8/LEPS.2.6 times higher statistics compared with previous data are collected.

•The inclusive M(NK⁺) spectrum for new data does not show a strong narrow peak, which is inconsistent with the previous shape analysis.

-The significance of the peak in new data is less than 2 σ by the shape analysis.

- The background shapes were not the same.
- A fluctuation was seen in proton tagged events of the previous data.

<u>Summary</u>

•Exclusive analysis is performed by identifying the proton contribution using energy loss in SC.

-A part of the inconsistency was due to fluctuation in proton tagged events.

-Enhancement of events are seen in the region of

- 1.5<M(nK⁺)<1.55 GeV/c² for proton rejected events.
- -The enhancement is seen in the both new and previous data. -S/N ratio strongly depends on the beam polarization.
- These results are checked and confirmed by MC-based exclusive analysis.
- Mass and significance estimation of the enhancement is underway.
- LEPS collaboration just started new experiment with a large SC.

Backup

- φ events are excluded by M(KK)>1.03 GeV/c²
- z-vertex, proton tagging cut is applied
- Good consistency between data and MC

49

dE/dX based and MC based M(nK+) with constant ϕ cut

M(KK)>1.04 GeV/c²

M(KK)>1.05 GeV/c²

100

Expected mass resolution for O⁺

Signal MC with realistic DC and E_v resolution

Previous data 10.9±0.1 MeV/c²

New data $10.8\pm0.1 \text{ MeV/c}^2$

Check the bias of proton tagging by LH2 data

MMγ(p**,K**⁺**)**X

- No significant structure for un-tagged events
- Number of events are actually very small

Subtract proton contribution for previous data

53 **16**

Subtract proton contribution for 06-07 data

Real data Proton events from MC

Comparison of the missing mass spectrum for LH2 data

Fitting new data only

Y. Kato FB20 2012/8/23

Simple K⁻ missing mass for proton rejected samp

Photon energy spectrum

new data

0.1mm pitch SSD air Vacuum chamber wall Plastic scintillator Scint. Fibers Chamber wall Entrance window Shield (Pb + Cu) 3/8" vacuum hodoscopes PMT "SFB" "SFF" Electron Tagger Light guide recoil electron 7.4 mm Π Ē 10 mm V + Cu 7.4 mm X-ray shield 8 GeV circulating electron 8-GeV circulating electron 59 Top view Front view of PL

Φ exclusion cut

 $M(nK^{+}) (GeV/c^{2})$

Randomized minimum momentum method for BG estimation

P_{min} VS MMγ(n,K⁻)X

Signal events has strong correlation between Pmin and MMγ(n,K⁻)X

Application of the RMM to previous data

- RMM spectrum is divided into three regions.
- •Significance is obtained from Δ -2ln(L) with and without the Gaussian
- •The peak height is 27.5±5.0, $\Delta \chi 2/ndf=30.4/2 = 5.1\sigma$. peak position 1524.±2+3MeV

Summary of the cut statistics

previous data

New data

Cut	Examined	Passed	Rejection
KK ID	-	37172	-
Vertex	37172	30838	1.20
DIF	30838	27059	1.14
Tagger	27059	25818	1.05
P _{min}	25818	18569	1.39
E_{γ}^{eff}	18569	14912	1.24
φ	14912	2080	7.17
Ntrk=2	2080	1969	1.06
Unphy	1969	1969	1.00

Cut	Examined	Passed	Rejection
KK ID	-	103336	
Vertex	103336	86233	1.20
DIF	86233	80755	1.07
Tagger	80755	65750	1.23
P _{min}	65750	49070	1.34
$E_{\gamma}^{\ eff}$	49070	39226	1.25
φ	39226	5388	7.28
Ntrk=2	5388	5106	1.06
Unphy	5106	5092	1.003

K⁻ missing mass with all cuts

