
01/29/2013 RIBF NP Seminar 1 

Lattice QCD studies for                 
Two- and Three-Nucleon Forces 

Takumi Doi 
(Nishina Center, RIKEN) 



• Hadron Interactions 
– Bridging different worlds:                               

Particle Physics / Nuclear Physics / Astrophysics 

– Frontier: 1st principle calc by Lattice simulations 

• Outline 
– Introduction 
– Theoretical framework for lattice hadron forces 
– Lattice results at heavier quark masses 

• Two-baryon interactions (NN, YN, YY) 
• Three-baryon interactions (NNN) 

– Challenges toward physical quark mass point 
•   Nuclear Physics on the Lattice 

– Summary / Prospects 



QCD Vacuum 

(1) Build a foundation for nuclear physics 

3 

NN phase shifts 
from experiments 

Various 
applications 

Neutron Stars 

Nuclei 

Super Novae 
Phenomenological 

Nuclear Forces 

• Nuclear Forces play crucial roles 
– Yet, no clear connection to QCD so far 
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3D Nuclear Chart 

(2) Predict Unknown Interactions (YN, YY, NNN) 

8 X 8 = 27 + 8s + 1 + 10* + 10 + 8a 

Renaissance in 
Strange World ! 

What is universal, and            
what is individual in baryon forces ? 

What is the fate of 
the H-dibaryon ? 

(uuddss) 



2D Nuclear Chart 

Super Nova 

(2) Predict Unknown Interactions (YN, YY, NNN) 

=Precise ab initio calc= 
2N-forces are insufficient       

3N-force indispensable 

Paradigm Shift in     
Unstable Nuclei              

(New Magic Numbers !) Important role of 3N-force 

Origin of 
Elements 

RIBF @ RIKEN 



Dense Matter  Interactions of       
YN, YY, NNN,… are crucial 

• Neutron Stars, Super Novae  EoS 
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2N 

3N 

PSR1913+16 

J1614-2230 

Y dof 
How to sustain a neutron star 

against gravitational collapse ? 

Akmal et al.(’98), Nishizaki et al.(’02), Takatsuka et al.(’08) 

Revival of quark matter ? (Masuda et al.) 



EoS of Neutron Star by Gravitational Waves ? 

 Full GR simulation of binary neutron star mergers              
w/ Shen-EoS (stiff) and Hyperon(Λ)−EoS (soft) 
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Y.Sekiguchi et al., arXiv:1110.4442[astro-ph.HE] 
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Lattice QCD                           
First-principle calculation of QCD 

4dim 
Euclid 
Lattice 

  

a 

L 

quarks on sites 

gluons on links 

• Well-defined reguralized system (finite a and L) 
• Gauge-invariance manifest 
• Fully-Nonperturbative 
• DoF ~ 109  Monte-Carlo w/ Euclid time 

Significant theoretical and 
hardware advances 

K.G. Wilson 

http://www.nobelprize.org/nobel_prizes/physics/laureates/1982/wilson.html
http://www.nobelprize.org/nobel_prizes/physics/laureates/1982/wilson.html
http://www.nobelprize.org/nobel_prizes/physics/laureates/1982/wilson.html
http://www.nobelprize.org/nobel_prizes/physics/laureates/1982/wilson.html
http://www.nobelprize.org/nobel_prizes/physics/laureates/1982/wilson.html


Status of Lattice QCD 

Summary by Kronfeld, arXiv:1203.1204 

Fully dynamical (unquenched) QCD simulations    
at the physical quark mass point already performed 

PACS-CS Coll., PRD81(2010)074503 
BMW Coll.,      JHEP1108(2011)148 

Hadron spectrum well reproduced ! 

Inputs: 
• quark masses (mu, md, ms) 
• coupling constant αs 



Roadmap:                                                   
Nuclear Physics and Astrophysics from Lat QCD 

QCD Vacuum 
Few-Body / Light Nuclei 

Baryon 

Heavy Nuclei 

Neutron Star / Supernova Standard M
odel 

1st-principle lat calc. 
N

uclear 
Forces Ab-initio nuclear calc. 

Lattice QCD predictions  
play a crucial role 

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/Focus1.jpg


 

 

 

 

• Outline 
– Introduction 
– Theoretical framework for lattice hadron forces 
– Lattice results at heavier quark masses 

• Two-baryon interactions (NN, YN, YY) 
• Three-baryon interactions (NNN) 

– Challenges toward physical quark mass point 
– Summary / Prospects 11 



Nuclear Physics on the Lattice 

• NN phase shift (Luscher’s formula) 
– Fukugita et al. PRL73(1994)2176 
– NPLQCD Coll,  reviewed in Prog.Part.Nucl.Phys 66(2010)1 

• NBS wave function  NN potential 
– Ishii-Aoki-Hatsuda PRL99(2007)022001, PTP123(2010)89 
– HAL QCD Coll. (2009-), reviewed in PTEP2012 (2012) 01A105 [arXiv:1206.5088] 

• Light nuclei on the lattice 
– Yamazaki-Kuramashi-Ukawa (PACS-CS Coll.) PRD81(2010)111504, PRD84(2011)054506 
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Other approaches, e.g., strong coupling limit 
de Forcrand and Fromm, PRL104(2010)112005 
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S. Aoki, N. Ishii, H. Nemura, K. Sasaki, M. Yamada   (Univ. of Tsukuba) 
B. Charron    (Univ. of Tokyo) 
T. Doi, T. Hatsuda , Y. Ikeda, K. Murano  (RIKEN) 
T. Inoue  (Nihon Univ.) 

Hadrons to Atomic nuclei from Lattice QCD 
(HAL QCD Collaboration) 



Nuclear Forces from Lattice QCD        
[HAL QCD method] 

• Potential is constructed so as to reproduce        
the NN phase shifts (or, S-matrix) 

• Nambu-Bethe-Salpeter (NBS) wave function 
 
 
 
– Wave function  phase shifts 

01/29/2013 

R L 
M.Luscher, NPB354(1991)531 

CP-PACS Coll., PRD71(2005)094504  

C.-J.Lin et al., NPB619(2001)467 

Ishizuka, PoS LAT2009 (2009) 119 



“Potential” as a representation of S-matrix 
[HAL QCD method] 

• Consider the wave function at “interacting region” 
 
– U(r,r’): faithful to the phase shift by construction 

• U(r,r’) below inelastic threshold is 
 
 
• U(r,r’): E-independent, while non-local in general 

• Non-locality  derivative expansion 
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R L 

LO LO NLO NNLO 

Okubo-Marshak(1958) 

Aoki-Hatsuda-Ishii PTP123(2010)89 

Check on convergence: K.Murano et al., PTP125(2011)1225 



Our Approach [HAL QCD method] 
L

at
tic

e 
Q

C
D

 NBS wave func. Lat Nuclear Force 

Lat potential is faithful to  
phase shift by construction (at asymptotic region) 

Sc
at

te
ri

ng
 E

xp
. Phase shifts 

Analog to … 
Phen. Potential 

16 



A few remarks on the Lattice Potential 
• Potential is NOT an observable and is not unique:                                  

They are, however, phase-shift equivalent potentials. 
– Choosing the pot. (sink op.)  choosing the “scheme” 

• We study potential (+ phase shifts), since:  
– Convenient to understand physics 
– Essential to study many-body 

 
 

– Finite V artifact better under control 
– Excited states better under control 

17 

R R 



 

 

 

 

• Outline 
– Introduction 
– Theoretical framework for lattice hadron forces 
– Lattice results at heavier quark masses 

• Two-baryon interactions (1) nuclear- (2) hyperon- forces 
• Three-baryon interactions 

– Challenges toward physical quark mass point 
– Summary / Prospects 18 



• “di-neutron” channel              central force 
• “deuteron” channel                central & tensor force 

19 

(1) NN potential on the lattice   
(positive parity) 

Nf=2+1 clover (PACS-CS), 1/a=2.2GeV, 
L=2.9fm, mπ=0.7GeV, mN=1.6GeV 

N.Ishii et al. (HAL QCD Coll.) 
PLB712(2012)437 

P           : projection to L=0         
Q=(1-P) : projection to L=2 

Coupled channel study 
for deuteron channel 



• “di-neutron” channel              central force 
• “deuteron” channel                central & tensor force 

20 

(1) NN potential on the lattice   
(positive parity) 

Nf=2+1 clover (PACS-CS), 1/a=2.2GeV, 
L=2.9fm, mπ=0.7GeV, mN=1.6GeV 

Not Bound 

phase shift 

Elab [MeV] 

N.Ishii et al. (HAL QCD Coll.) 
PLB712(2012)437 



Quark mass dependence 
C

entral 
Tensor 

3S1-3D1 channel Central in 1S0 

Lighter mass corresponds to… 

• Longer interaction range 
• Larger Repulsive Core 
• Stronger Tensor Force 
 

 N.Ishii @ Lat2012 



• S=1 channel:  
– Central & tensor forces in LO 
– Spin-orbit force in NLO 

• Inject a momentum   
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NN potential on the lattice   
(negative parity) 

[K.Murano] 

Superfluidity 3P2 in neutron star  
 neutrino cooling 

Nf=2 clover (CP-PACS), L=2.5fm, mπ=1.1GeV 

 Cas A NS: cooling is being measured ! 



 

 

 

 

• Outline 
– Introduction 
– Theoretical framework for lattice hadron forces 
– Lattice results at heavier quark masses 

• Two-baryon interactions (1) nuclear- (2) hyperon- forces 
 

• Three-baryon interactions 

– Challenges toward physical quark mass point 
– Summary / Prospects 23 



Repulsive core    
 Pauli principle ! 

a=0.12fm, L=3.9fm, 
m(PS)= 0.47-1.2GeV 

27,10*:              
Same as NN 

8s,10:                                  
strong repulsive core 

1s: deep attractive pocket 
8a: weak repulsive core 

T.Inoue et al. (HAL QCD Coll.), NPA881(2012)28 

(2) Hyperon forces 

attractive core ! 

M.Oka et al., NPA464(1987)700 

Also seen in Takahashi et al. (2010), Kawanai et al. (2010) 
Meson-baryon, Y.Ikeda et al., arXiv:1111.2663 

 Study of baryonic matter & Neutron Star    [T.Inoue ] 

SU(3) study 



Mπ  [MeV] 

M
K
  [

M
eV

] 
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H-dibaryon (uuddss, I=0,1S0) 
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4He+Λ+Λ 

7.25 ±0.1 MeV 

0+ 

・ ΛN attraction 
・ ΛΛ weak attraction 
・ No deeply bound H-dibaryon 

Experiments 



Mπ  [MeV] 

M
K
  [

M
eV

] 

26 
 K.Sasaki  

Coupled channel study is essential 

B.E. 

SU(3) lat 

120MeV 

30MeV 

Physical point 

? 

H-dibaryon (uuddss, I=0,1S0) 

01/29/2013 



Coupled channel beyond SU(3) 

27 [K.Sasaki] 





Hyperon Interactions in S= -1 
 
 
 
 
 
 
 

 
Nemura et al. 
Nf=2+1, L=2.9fm,         
mπ= 0.70GeV 
arXiv:1203.3320 

Crucial input for the core of 
neutron star and hyper-nuclei 

Attractive 
    Not bound 

29 [H. Nemura] 
is also in progress 

(single channel study) 

Repulsive 



 

 

 

 

• Outline 
– Introduction 
– Theoretical framework for lattice hadron forces 
– Lattice results at heavier quark masses 

• Two-baryon interactions (1) nuclear- (2) hyperon- forces 
• Three-baryon interactions (NNN) 

– Challenges toward physical quark mass point 
– Summary / Prospects 30 



Neutron Star 
（Densest system     
in the Universe） 

31 

Crucial role of 3NF at short range 

2N 

3N 

Short-range repulsive 3NF is required 

PSR1913+16 

J1614-2230 

π 
π 

In phenomenological models: 

2πE-3NF:                          
 too strong attraction  

Tucson-Melbourne 

 (effective) short-range repulsion by cut-off 

Urbana/Illinois 

2πE-3NF +  explicit short-range repulsive term 

Chiral EFT 

Can we understand it directly from QCD ? 

Short-range LECs fitted 
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 In the case of 2N system… 
 Calc 4pt func NBS amp. 
      

 
 

 Extention to 3N system 
 Calc 6pt func NBS amp. of 3N 

 

 Obtain 3NF through 
 
 

 

– The combination of (2NF, 3NF)  observables 
•  systematic determination by Lat QCD 

 
 
 

by 2N calc 

3NF calculation in Lat QCD 



• Enormous computational cost for correlators  

The Challenges 



• Enormous computational cost for correlators  
– # of Wick contraction (permutation) 

•                                                  for mass number A 
 

– # of color / spinor contractions 
 

– Total cost:  
– 2H   :                  9   x      144  = 1 x 103 

– 3H   :              360   x    1728  = 6 x 105 

– 4He :          32400   x  20736  = 7 x 108 

(color) (spinor) 

c.f. T.Yamazaki et al., 
PRD81(2010)111504 

( a factor of 2A speedup by inner-baryon exchange)  

The Challenges 

( a factor of 2A speedup by “half-spin” method)  

See also TD (HAL QCD Coll.) 
PoS LAT2010, 136  01/29/2013 



Unified contraction algorithm 

• Traditional algorithm 
 
 

 

• New algorithm 
– Permutation applies to color/spinor indices at “Coeff” 

 
 

 
– Permutation DONE beforehand 

• (Wick contraction and color/spinor contractions are unified) 
– Significant improvement 

Permutations       

color/spinor contractions (ξ’) 

Sum over color/spinor unified list 

Permuted Sum 

TD, M.Endres, arXiv:1205.0585, CPC184(2013)117 

[impose the same spacial label at source] 

   4He 
<1sec 

(x add’l. speedup) 



 We fix the geometry of 3N   ( this is not an approximation) 
 

 We study linear setup 
 
 
 

 

  L(1,2)-pair = Ltotal = 0 or 2 only 
  Bases are only three, labeled by  1S0, 3S1, 3D1 for (1,2)-pair 
 

 Linear setup with various distance “r2” 
 
 

3NF calculation in Lat QCD 

long “r2” setup short “r2” setup 

Study r2-dependence of 3NF 

We consider 
Triton channel 

(1) 
(3) 

(2) 



 Genuine 3NF can be extracted from 3x3 coupled channel 
 Both of parity-even 2NF and parity-odd potential required  

 

 

 

 

 S/N : parity-even 2NF > parity-odd 2NF in Lat QCD 
  Desirable to extract 3NF w/ parity-even 2NF only 

Extraction of Genuine 3NF 

Target to be 
determined 

01/29/2013 RIBF NP Seminar 37 
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 We can construct the wave function in which any 2N pair 
is spin/isospin anti-symmetric 
 
 
  L=even for any 2N pair automatically guaranteed 

 Bases are rotated as  
 

 

Solution using 
“symmetric” wave function  

All pair P=even 

No V(P=odd) 
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 We can construct the wave function in which any 2N pair 
is spin/isospin anti-symmetric 
  L=even for any 2N pair automatically guaranteed 

 3x3 coupled channel is reduced to 
 one channel with only 3NF unknown 
 two channels with VC

I,S=0,0, VC
I,S=1,1, VT

I,S=1,1,(3NF) unknown 
 
 
 
 
 

  Even without parity-odd V, we can determine one 3NF 
 This method works for any fixed 3D-geometry other than linear 

Solution using 
“symmetric” wave function  

No V(P=odd) Target to be 
determined 
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Results for wave functions 

Red:     ΨS 
Blue:    ΨM 
Green:  Ψ3D1  

ΨS overwhelms the 
wave function: 

 Indication of the dominance 
of all S-wave component,     
higher waves suppressed 

T.D. et al. (HAL QCD) 
PTP127(2012)723  
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Preliminary 

short-range 
repulsive 3NF ! 

T.D. et al. (HAL QCD Coll.) PTP127(2012)723  

Nf=2 clover (CP-PACS), 1/a=1.27GeV, 
L=2.5fm, mπ=1.1GeV, mN=2.1GeV How about YNN, YYN, YYY ? 

(3) 3N-forces (3NF) on the lattice 

+ t-dep method updates 

Y dof 

How about other geometries ?  

Triton channel 
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What is the origin of Lat 3NF ? 

 2πE-type 3NF (Fujita-Miyazawa) is unlikely 
 Strongly suppressed by mπ = 1.13GeV 

 It may be attributed to quark/gluon dynamics directly 
 Recall generalized 2BF in SU(3)f … 

π 
π 



Repulsive core    
 Pauli principle ! 

SU(3) study a=0.12fm, L=3.9fm, 
m(PS)= 0.47-1.2GeV 

27,10*:              
Same as NN 

8s,10:                                  
strong repulsive core 

1s: deep attractive pocket 
8a: weak repulsive core 

T.Inoue et al. (HAL QCD Coll.), NPA881(2012)28 

BB potentials 

M.Oka et al., NPA464(1987)700 

Also seen in SU(2)c , Takahashi et al.,, PRD82(2010)094506 

Meson-baryon, Y.Ikeda et al., arXiv:1111.2663 
Charmonium-N, Kawanai-Sasaki, PRD82(2010)091501 
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What is the origin of Lat 3NF ? 

 2πE-type 3NF (Fujita-Miyazawa) is unlikely 
 Strongly suppressed by mπ = 1.13GeV 

 It may be attributed to quark/gluon dynamics directly 
 Recall generalized 2BF in SU(3)f … 

  Pauli principle works well 

 What will be the Pauli-principle effect in 3NF from a 
viewpoint of the Quark Model ? 

 c.f. OPE (pert. QCD) predicts repulsive 3NF at short distance 
S.Aoki et al., arXiv:1112.2053 

π 
π 

Repulsive 3NF from AdS/CFT (Hashimoto-Iizuka) 



 

 

 

• Outline 
– Introduction 
– Theoretical framework for lattice hadron forces 
– Lattice results at heavier quark masses 
– Challenges toward realistic potentials 

• Computational cost  unified contraction everywhere 
• S/N issue 

– Summary / Prospects 
10PFlops 

K computer 

45 



• Physical mass point, Infinite V limit, continuum limit 

– Physical mπ crucial for OPEP, chiral extrapolation won’t work 
 
 
 
 

 

– Gauge confs generation at mπ = 140MeV, L=~10fm @ K 
 

Towards realistic potential by the K computer 
Sc

at
t.

 le
n

gt
h

 

 mq 
Phys. point 

 mq 

“Unitary Region” 

We are here 

Y.Kuramashi, 
PTPS122(1996)153 

 Challenge in the “measurement”: S/N issue 
46 



Challenges toward the physical point 

• S/N issue at light mass 
– To achieve ground state saturation, take  𝒕 → ∞ 

 
 

 
 

 

– Situation gets worse for larger volume                                     
 large spectral density by scatt. states 

Parisi, Lepage (1989) 

Nucleons w/ mass number = A 

Single nucleon 

 Very large t >~ 100 would be required ! 



Solution: Extract the signal from excited states 
N.Ishii et al. (HAL QCD Coll.) PLB712(2012)437 

E-indep of potential U(r,r’)  (excited) scatt states share the same U(r,r’)                 
They are not contaminations, but signals   

Grand State (G.S.) saturation is NOT necessary !  

 Moderate t >~ 10 would be fine 

 Schrodinger Eq. : time-independent  time-dependent   

Significant advantage of potential method: 

48 

 
Beautiful agreement  between 
(1) Luscher’s formula       w/           g.s. saturation 
(2) the HAL QCD method w/ & w/o  g.s. saturation 

Explicit Lat calc for I=2 pipi phase shift 

T.Kurth et al. (HAL-BMW Coll.) @ Lat2012 
01/29/2013 



Summary and Prospects 

• Hadron Interactions by 1st principle Lat calc  

– Bridging different worlds:                                             
Particle Physics / Nuclear Physics / Astrophysics 

• Lattice QCD results for NN, YN/YY, NNN 
– Intriguing physics even at heavy quark masses 

• On the K computer:  physical quark mass point ! 
 Breakthroughs in S/N issue & Comput. cost issue 

 10PFlops Thermodynamic limit & continuum limit 

 Realistic hadron interactions 
 Nuclear Physics on the Lattice ! 
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Backup Slides 
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Scatterings on the lattice 
• Luscher’s formula 

– Extract the phase shifts from spectrum in finite V 
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M.Luscher, CMP105(1986)156 
                 NPB354(1991)531 

Large V expansion 

Bound state 
Infinite V extrapolation has to be examined  

01/29/2013 
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(1) We assume ψ(x; E) for different E is linearly independent with each other. 

(2) ψ(x; E) has a “left inverse” as an integration operator as 
 
 

(3) K(x; E) can be factorized as 
 
 
 
 
 

(4) We are left with an effective Schrodinger equation with an E-independent potential U. 

( )2 2( ; ) ( ; )K x E k x Eψ≡ ∇ +
 

2 22 NE m k≡ +

( , )Nm U x y≡
 

( )2 2 3( ; ) ( , ) ( ; )Nx E m d yU x y yk Eψ ψ∇ =+ ∫
    

Effective Schrodinger equation with E-independent potential 

[START] local but E-dep pot.  (L3xL3 dof) 

[GOAL] non-local but E-indep pot.  (L3xL3 dof) 

Intuitive 
understanding 



Solution: Extract the signal from excited states 
N.Ishii et al. (HAL QCD Coll.) PLB712(2012)437 

E-indep of potential U(r,r’)  (excited) scatt states share the same U(r,r’)                 
They are not contaminations, but signals   

Grand State (G.S.) saturation is NOT necessary !  

 
Beautiful agreement  between 
(1) Luscher’s formula       w/           g.s. saturation 
(2) the HAL QCD method w/ & w/o  g.s. saturation 

Explicit Lat calc for I=2 pipi phase shift 

G.S. saturated or not,                 
that is NOT a question ! 

54 RIBF NP Seminar 



Explicit check on the new t-dep HAL method 
N.Ishii et al. (HAL QCD Coll.) PLB712(2012)437 NN system 

[OLD]  

Different sources (creation op.)  different results 

“contaminations” from excited states 

[NEW]  

Results converged 

“signals”  from excited states 

pipi (I=2) system T.Kurth et al. (HAL-BMW Coll.) @ Lat2012 

Effective mass 
(Preliminary) 

Scatt. length 
 
Beautiful agreement  between 
(1) Luscher’s formula     
        w/           g.s. saturation 
(2) the HAL QCD method  
        w/ & w/o  g.s. saturation 
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Quenched QCD              
mπ = 530MeV, L=4.4fm 

Ishii-Aoki-Hatsuda, 
PRL99(2007)022001  

NBS wave function Nuclear Force 

Nuclear Potential (from Lat QCD) 
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Tensor Potential from Lat QCD 

 Coupled channel study in 3S1-3D1 channel 

P           : projection to L=0         
Q=(1-P) : projection to L=2 

Wave function Potentials 

Aoki-Hatsuda-Ishii,    
PTP 123 (2010) 89 

(repulsive) 

(attractive) 
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“Energy dependence” of       
LO Vc(r) in velocity expansion 

E ～ 0 MeV 

K.Murano et al., (HAL QCD Collab.) 
PoS Lattice 2009 (2009) 126 

Anti-periodic BC  
to achieve E ≠0 

Quenched QCD 
mπ =0.53GeV 

a=0.137fm 

O.K. ! 

In our choice of wave function,      
E-dependence of the local potential 
turns out to be very small at low E. 

 Velocity expansion is good ! 
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L2 dependence of Vc(r) in S=0 

K.Murano (HAL QCD Collab.) @ Lattice 2010 

Quenched QCD 
mπ =0.53GeV 

a=0.137fm           
E ~= 45MeV 

In our choice of wave function,      
L2-dependence of the local potential 

turns out to be small at low E. 

 Velocity expansion is good ! 

A1
+ NBS wave (1S0) T2

+ NBS wave (1D2) 

~ Y2m (r )∑

(consistent within stat. error) 

Anti-periodic BC  
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 Nf=2 clover fermion + RG improved gauge action (CP-PACS) 
 598 configs x 32 measurements 
 beta=1.95, (a-1=1.27GeV, a=0.156fm) 
 163 x 32 lattice, L=2.5fm 

 Μ(π) = 1.13GeV 
 M(N) = 2.15GeV 
 Μ(∆) = 2.31GeV 

 
 Correlators 

 Standard nucleon op to define the wave function / potential at sink 
 

 Non-rela limit op is used to create 3N state at source 
 
 

Lattice calculation setup 

CP-PACS Coll. S. Aoki et al., 
Phys. Rev. D65 (2002) 054505  

(Mπ L=14) 

t=t(src) t=t(sink) 

sink source 

( κ(ud) =0.13750 ) 

See also T.Yamazaki et al., 
PRD81(2010)111504 

60 



61 

 2NF (parity-even) from Lat QCD 

Nf=2, CP-PACS confs,  M(π)=1.13GeV 

 

N
B

S 
W

av
e 

fu
n

ct
io

n
 

Red:    1S0 
Blue:   3S1 
Green: 3D1 

01/29/2013 RIBF NP Seminar 



RIBF NP Seminar 62 

Short-Range 3NF 
 We determine 3NF effectively represented by a 

scalar/isoscalar functional form 
 c.f.  phenomenological 3NF to reproduce saturation point of   

nuclear matter, etc. 

Plot of 3NR only:               
there is cancellation from 3NA 

Urbana/Illinois 

AdS/CFT: 
K.Hashimoto, N.Iizuka 
JHEP 1011 (2010) 058 

r2 [fm] 
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Other Systematics ? 

 Finite V artifact ? 
 L=2.5fm   (mπ x L) = ~14 

 <r2
B> <~ (0.4fm)2 

 Larger r2 points  
  carefully taken in off-axis direction 

 Quark mass dependence ? 
 -- certainly. 
 calc w/ lighter mass in progress 

on-axis 

L 

N.B.  It is not necessary that        
phen 3NF and Lat 3NF exactly match. 

01/29/2013 RIBF NP Seminar 



T.Inoue @ QUCS2012 

EoS of Nuclear Matter from Lattice Forces 
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