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Calculated rates deviates among theories at low temperature
1026 order of magnitude difference at 107 K
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Calculation of triple-alpha reaction rate at low temperature
Difficulties and theoretical challenges

- Treatment of  scatting of three charged particles,
(we do not know “Coulomb wave function” for 3-charged particles).

- We need to treat tunneling phenomena of three charged particles.
The reaction rate changes 1060 in magnitude between 107 – 109 K.

Our Attempt: develop a new theory
Imaginary-time theory for radiative capture reaction rate



Imaginary-time theory for triple-alpha reaction rate

1. Imaginary-time theory for 2-body radiative capture reaction rate
K. Yabana and Y. Funaki, Phys. Rev. C85, 055803 (2012).

2.    Apply the imaginary-time theory for triple-alpha reaction rate
Reaction rate, reaction mechanisms

3.    Why different theories result in different results?
Slow convergence in coupled-channels approach

4.    Derive NACRE formula from the imaginary-time theory
R-matrix theory + separable approximation
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Standard procedure for capture rate

Step 1. Calculate reaction cross section (E)

Step 2. Average over Boltzmann distribution  <v>

K.Yabana and Y.Funaki. PRC85,055803(2012)

What is the imaginary-time theory?

Our new (numerical) method

Identify inverse temperature as imaginary-time
as in quantum theory of nonequilibrium systems

Averaging over Boltzmann distribution 
= Evolution of wave function along the imaginary time axis,

starting with wave function after capture reaction

We can obtain reaction rate without solving any scattering problems

t

i

kT
1



(Skip step 1, calculation of (E))



Reaction	rate	of		݅ → ݂ transition accompanying photo-emission  
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Imaginary-time method (1/3): Ordinary procedure

Reaction rate at temperature ߚ ൌ 1/݇஻ܶ
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Imaginary-time method (2/3): Eliminate scattering states

bound wave function 
after photo-emission

eliminate scattering 
wave function
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Basic expression for the reaction rate in the imaginary-time theory

Imaginary-time algorithm for practical computations
1. Prepare initial wave function

2. Solve imaginary time equation

3. Take overlap to obtain reaction rate
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- No need to solve scattering problem.
(No boundary condition required)

- Solving in finite space amounts to bound state approximation.
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Imaginary-time method (3/3): Computational procedure

K.Yabana and Y.Funaki. PRC85,055803(2012)
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Test the method in a 2-body problem: 
Direct capture process of 16O()20Ne
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Astrophysical S-factor
for 16O()20Ne
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Imaginary-time evolution of the radial wave function -1

Rmax=400 fm

Barrier top
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Imaginary-time evolution of the radial wave function -2

Barrier top

   rMP
c
EH

r f
f 


  



















 
 ˆ

ˆ
0,

12

   


,, rHr 







       ,* rMrrdr f




Imaginary-time algorithm:
1. Prepare initial wave function

2. Solve imaginary time equation

3. Take overlap to obtain reaction rate



Imaginary-time method gives the same reaction rate as that by 
ordinary method, if calculation is achieved in sufficiently large space.

Ordinary  calculation vs Imaginary-time calcualtion

Test example-16O, l=0

Ordinary method
= Imaginary-time method (Rmax>400fm)

Spatial size in solving
the imaginary-time evolution
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What determines the maximum radius
needed in solving imaginary-time evolution?
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- potential
to reproduce 8Be resonance (ground state) energy and width
ER	ൌ	92	keV ሺൌExpሻ,		ൌ	5.9	eV ሺExp 5.6	eVሻ

We add “three-body force” among alpha particles
to reproduce 02

+ (Hoyle state) resonance energy 
E0+ =379.5 keV

Final wave function (2+ state of 12C)
Adopted from phenomenological 3-alpha cluster model 
(Orthogonality Condition Model = OCM)

ఈܸఈ=500.0݁ିሺ଴.଻௥ሻమ െ 130.0݁ି ଴.ସ଻ହ௥ మ ൅ Coulomb

ఈܸఈఈ=െ924.43݁ି଴.ଵହሺ௥భమమ ା௥మయమ ା௥యభమ ሻ






Choice of the Hamiltonian



:Ԧݎ ݈ ൌ 0

ܴ: ܮ ൌ 0

߰ ,Ԧݎ ܴ, ߚ ൌ
,ݎ௟ୀ௅ୀ଴ሺݑ ܴ, ሻߚ

ܴݎ ௟ܻୀ଴ ݎ̂ ௅ܻୀ଴ ෠ܴ
௃ୀ଴ ൌ

1
ߨ4

,ݎሺ	ݑ ܴ, ሻߚ
ܴݎ

Coordinate system and model space

このイメージは、現在表示できません。

Jacobi coordinate

Taking Lൌ ݈ ൌ 0 angular momentum channel
in the imaginary-time evolution.

The same as those adopted in CDCC calculation
K. Ogata et.al, Prog. Theor. Phys. 122, 1055 (2009).

ݎ ߚ ∝ ൻΦ௙หܯ஛ஜ݁ିఉு
෡ ෡ܪ െ ௙ܧ

԰ܿ

ଶ஛ାଵ

෠ܲܯ஛ஜ
ାหΦ௙ൿ ≡ Φ௙ ஛ஜܯ Ψ ߚ

2+ OCM wave function



Numerical detail to treat the radial imaginary-time equation

We simply discretize both radial coordinates with grid spacing
up to a certain spatial region,                    .

Differentiation with respect to R and r are treated by
high-order finite-difference formula.
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rmax	ൌ 50 fm
Rmaxൌ 50 fm

rmax	ൌ 100 fm
Rmaxൌ 100 fm

rmax	ൌ 200 fm
Rmaxൌ 200 fm

100 MeV-1

= 1.15 x 108 K
1000 MeV-1

= 1.15x 107 K

rmax	ൌ 400 fm
Rmaxൌ 400 fm

rmax	ൌ 500 fm
Rmaxൌ 500 fm Indistinguish

-able

=1/kBT

NACRE 
(C.Anglo. et al., 
NPA656(1999)3.)

,	Ԧݎ ݈ ൌ 0

ܴ	, ܮ ൌ 0
1

2

3

rmax	ൌ 600 fm
Rmaxൌ 600 fm

Convergence with respect to spatial size (Rmax and	rmax)
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Nomoto 1985、NACRE 1999：
Sequential 2-body process assuming secular equilibrium

Changes of dominant reaction mechanisms in empirical theory

ܶ ൌ 7.4 ൈ 10଻K ܶ ൌ 2.8 ൈ 10଻K

High TemperatureLow Temperature

12C*(02
+)

By way of Holy state
(12C resonance)

8Be*

Binary collision
(8Be resonance)

Direct 3-alpha collision

92 keV 379 keV



12C*（Hoyle 
state）

8Be*+α

ܶ ൌ 7.4 ൈ 10଻K

ܶ ൌ 2.8 ൈ 10଻K

ߚ ൌ 10	MeVିଵሺT ൌ 1.15 ൈ 10ଽKሻ ߚ ൌ 200	MeVିଵሺT ൌ 5.76 ൈ 10଻Kሻ

ߚ ൌ 400	MeVିଵሺT ൌ 2.88 ൈ 10଻Kሻ

ߚ ൌ 1000	MeVିଵሺT ൌ 1.15 ൈ 10଻Kሻ

Reaction rate
ݎ ߚ ∝ Ψ

ߚ
2

ොܪ െ ௙ܧ
԰ܿ

ଶ஛ାଵ

Ψ
ߚ
2

r

R

r

R

R

r

23/11

Direct fusion of 3α
particles

Our imaginary-time result shows changes of reaction mechanisms 
at exactly the same temperatures as those of empirical theory



Reaction rate

ݎ ߚ ∝ Ψ ఉ
ଶ

ு෡ିா೑
԰௖

ଶ஛ାଵ
Ψ ఉ

ଶ

,	Ԧݎ ݈ ൌ 0

ܴ	, ܮ ൌ 0
1

2

3

Average	and	variance	of	energy
ܪ ≡ Ψ 2/ߚ ෡ܪ Ψሺ2/ߚሻ	
ଶܪ ≡ Ψ 2/ߚ ෡ଶܪ Ψሺ2/ߚሻ	
Δܪ ≡ ଶܪ െ ܪ ଶ

ൎ 108

K
ൎ 107 K=1/kBT

12C*(Hoyle)

8Be*+α

ܶ ൌ 7.4 ൈ 10଻K

ܶ ൌ 2.8 ൈ 10଻K

12C(02+)
E=0.3795
MeV

8Be(01+)
E=0.092
MeV

24/11

Direct 3 process
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K. Yabana and Y. Funaki, Phys. Rev. C85, 055803 (2012).
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Reaction rate, reaction mechanisms
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4.    Derive NACRE formula from the imaginary-time theory
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We use almost the same Hamiltonian, coordinate system, and the truncation of the
partial wave as those adopted by K. Ogata et.al, Prog. Theor. Phys. 122 (2009) 1055.
However, the obtained rate is more than 1020 times different at low temperature.

We solve the imaginary-time evolution equation in the finite difference approximation,
while in the CDCC method, basis function expansion is introduced.

To clarify the origin of the difference, we solve the imaginary-time equation
employing the coupled-channels method (basis function expansion).



Up to now, we solved it as a differential equation.
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Instead, we solve the equation using basis function expansion.
We first solve  2-body problem.

We then expand 3-body wave function with the basis
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If we use a complete set          , then the coupled-channel calculation gives completely 
the same result as that we shows previously. However, if we make a truncation, 
the result may be different.
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NACRE 
(C.Anglo. et al., NPA656(1999)3.)

n E 
[MeV]

1 0.013

⁞

14(res) 0.092

15 0.093

16 0.103

⁞

1200 451.3

2α Energy

1000 MeV-1

= 1.15x 107 K=1/kBT
100 MeV-1

= 1.15x 108 K

E=0.013MeV(nmax=1 )

E=45.4MeV(nmax=400)

E=451.3MeV(nmax=1200,
all channels included)

Coupled Channel Calculation  [dr = 0.5 fm, Nr = 1200, rmax = 600 fm]
Nmax=1 (single channel): overestimate by 1015

Nmax=400 (E=45.4 MeV): still overestimate by 1012

Nmax=1200 (all channels) coincides with result without channel expansion.

Very slow convergence with respect to increase of channel number.



Why the single channel calculation 
so much overestimates the reaction rate?

n=14(E=0.092MeV , 
8Be ground state resonance)

2α wave function (wn(r))

2α distance: r [fm]

n=1(E=0.013MeV)

Most wave functions localize 
outside the Coulomb barrier.

Diagonal (folding) potential (Vnn(R))

2α-α distance : R [fm]

n=14(E=0.092MeV , 
8Be ground state resonance)

n=1(E=0.013MeV)

Very small barrier for n=n’=1 channel.
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n=14(E=0.092MeV , 
8Be ground state resonance)

2α wave function (vnl(r))

2α distance: r [fm]

n=1(E=0.013MeV)

Most wave functions localize 
outside the Coulomb barrier.

Diagonal (folding) potential (Vnn(R))

2α-α distance : R [fm]

n=14(E=0.092MeV , 
8Be ground state resonance)

n=1(E=0.013MeV)

Very small barrier for n=n’=1 channel.

Coulomb barrier for “Channel-1”

	Ԧݎ

ܴ	1

2

3

Since 1 and 2 are far away,
3 feels very small barrier.



NACRE 
(C.Anglo. et al., NPA656(1999)3.)

1000 MeV-1

= 1.15x 107 K=1/kBT
100 MeV-1

= 1.15x 108 K

Eaa=0.013MeV(nmax=1)

Eaa=45.4MeV(nmax=400)

Eaa=0.092MeV(nmax=14, 8Be)

Eaa=0.145MeV(nmax=20)

Eaa=183.5MeV(nmax=900
)
Eaa=451.3MeV(nmax=1200)

nmax=1200 (all channels included)



Imaginary-time theory for triple-alpha reaction rate

1. Imaginary-time theory for 2-body radiative capture reaction rate
K. Yabana and Y. Funaki, Phys. Rev. C85, 055803 (2012).

2.    Apply the imaginary-time theory for triple-alpha reaction rate
Reaction rate, reaction mechanisms

3.    Why different theories result in different results?
Slow convergence in coupled-channels approach

4. Derive NACRE formula from the imaginary-time theory
R-matrix theory + separable approximation
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Nomoto 1985、NACRE 1999：
Sequential 2-body process
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Imaginary-time theory

We next examine the relation analytically using R-matrix theory.

Though empirical and imaginary-time theories look very different,
calculated rate is almost the same.



Derivation of “Breit-Wigner formula” from imaginary-time theory
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We start with the imaginary-time formula for reaction rate

Spectral representation of the Hamiltonian
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Continuum wave function around resonance energy (R-matrix theory)
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Approximate spectrum representation of the Hamiltonian effective around resonance
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Putting this relation to the rate expression in the imaginary-time theory, 
we main obtain the “Breit-Wigner formula” for the reaction rate.
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Derive the empirical formula in the imaginary-time theory
Two basic assumptions for microscopic 3-body Hamiltonian
1. The Hamiltonian is separable, into α-α and α-8Be parts

2. Hoyle state is described by a product of  and -8Be resonant wave functions.
Be8 hhH 

Approximate spectral representation of H using R-matrix theory
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Put it in the rate expression of the imaginary-time theory
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Triple-alpha reaction rate derived from imaginary-time theory

 E
We ignore energy
shift

This expression mostly coincides with that of NACRE
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There are a few minor differences.



Summary

We have developed the imaginary-time theory for the radiative capture reaction rate.
- It does not require any scattering solution to calculate reaction rate

We have applied the imaginary-time theory to the triple-alpha reaction rate.
- We can calculate a convergent reaction rate.
- The calculated reaction rate accurately coincides with that of NACRE
- Changes of reaction mechanisms occur at exactly the same temperature of
- those of NACRE.
- We clarified that the truncation in the coupled-channel method gives larger reaction rate

at low temperature.
- Using R-matrix theory and assuming separable approximation, 

we may derive an analytical “Breit-Wigner formula” in the imagianry-time theory,
which almost coincide with the formula of NACRE

Future task:
- Contributions of high partial wave components
- Calculation imposing exact symmetry of 3-alpha particles.


