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Dominant '>C synthesis process depends on temperature
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Calculated rates deviates among theories at low temperature
10%¢ order of magnitude difference at 107 K
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Imaginary-time theory,
Akahori, Funaki, Yabana, in preparation.
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Calculation of triple-alpha reaction rate at low temperature
Difficulties and theoretical challenges

- Treatment of scatting of three charged particles,
(we do not know “Coulomb wave function” for 3-charged particles).

- We need to treat tunneling phenomena of three charged particles.
The reaction rate changes 10°° in magnitude between 107 — 10° K.

Our Attempt: develop a new theory
Imaginary-time theory for radiative capture reaction rate
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Apply the imaginary-time theory for triple-alpha reaction rate
Reaction rate, reaction mechanisms

Why different theories result in different results?
Slow convergence in coupled-channels approach

Derive NACRE formula from the imaginary-time theory
R-matrix theory + separable approximation
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What 1s the imaginary-time theory?

Standard procedure for capture rate

Step 1. Calculate reaction cross section G(E)

Step 2. Average over Boltzmann distribution <vo>

Our new (numerical) method
K.Yabana and Y.Funaki. PRC85,055803(2012)

Identify inverse temperature as imaginary-time B = 1

as in quantum theory of nonequilibrium systems KT

Averaging over Boltzmann distribution
= Evolution of wave function along the imaginary time axis,
starting with wave function after capture reaction

‘ (Skip step 1, calculation of o(E))

We can obtain reaction rate without solving any scattering problems

v



Imaginary-time method (1/3): Ordinary procedure

hoton (A
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Imaginary-time method (2/3): Eliminate scattering states

Closure relation
=20k |+ [ okl )|
Spectral representation of the Hamiltonian
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Reaction rate
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bound wave function

Imaginary-time after photo-emission

evolution operator P=1->|4)4

Projector to remove bound states.



Imaginary-time method (3/3): Computational procedure

Basic expression for the reaction rate in the imaginary-time theory

b)) P=1-Xlh)d]

Imaginary-time algorithm for practical computations

1. Prepare initial wave function
A 24+1
E/]

A 22+1
D VT (g |M,,e" (H;—(‘Ff‘j PM,,*

ep-0-| ] B, )
=0)= —— r .
vir.p u Taylor expansion method
2. Solve imaginary time equation B NP
o . 4 w(F, f+8p)=Pe " y(F,p)
__l//(rnB):HW(rnB) _ ¥
o’ o <3 . p)
3. Take overlap to obtain reaction rate c K

r(B)ec [dig, (FM (¥, B)

- No need to solve scattering problem.
(No boundary condition required)

- Solving in finite space amounts to bound state approximation.

K.Yabana and Y.Funaki. PRC85,055803(2012)
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Test the method 1n a 2-body problem:
Direct capture process of 1°O(a,y)*’Ne
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Imaginary-time evolution of the radial wave function -1
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Imaginary-time algorithm:
1. Prepare initial wave gunction
A 2A+1
H+|E R .
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2. Solve imaginary time equation
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3. Take overlap to obtain reaction rate
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Imaginary-time evolution of the radial wave function -2
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Imaginary-time algorithm:
1. Prepare initial wave function

A 22+1
w(F,p=0)= A+ PM,, "¢, (F)

2. Solve imaginary time equation
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3. Take overlap to obtain reaction rate
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Ordinary calculation vs Imaginary-time calcualtion

Test example: a-1°0, 1=0
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= Imaginary-time method (R, ,,>400fm)
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Imaginary-time method gives the same reaction rate as that by
ordinary method, if calculation 1s achieved in sufficiently large space.



What determines the maximum radius

Maxwell-Boltzmann
distribution

7

Cross section

needed 1n solving imaginary-time evolution?
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2. Apply the imaginary-time theory for triple-alpha reaction rate
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3.  Why different theories result in different results?
Slow convergence in coupled-channels approach

4. Derive NACRE formula from the imaginary-time theory
R-matrix theory + separable approximation



Choice of the Hamiltonian

a-o potential
to reproduce ®Be resonance (ground state) energy and width
Ex=92keV (=Exp), '=5.9 eV (Exp 5.6 V)

Ve =500.0e~(©71* — 130.0¢~(04757)° 4 Coulomb @
We add “three-body force” among alpha particles @
to reproduce 0," (Hoyle state) resonance energy @
E,.=379.5 keV

Voyaa=—924.43¢ —0.15(r%+1ri3+12,)

Final wave function (27 state of 1°C)
Adopted from phenomenological 3-alpha cluster model
(Orthogonality Condition Model = OCM)



Coordinate system and model space

The same as those adopted in CDCC calculation
K. Ogata et.al, Prog. Theor. Phys. 122, 1055 (2009).

Jacobi1 coordinate

Taking L=1 = 0 angular momentum channel
in the 1imaginary-time evolution.
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Numerical detail to treat the radial imaginary-time equation

0 n
_a_uLzlzo(Ra r,ﬂ): HL:I:O(R7 r)uL:I:O(R7 r,ﬂ)
)4
2 2 2 A2
A, -0 WO +V(r,R)

ST M AR? 2 ar?
We simply discretize both radial coordinates with grid spacing AR = Ar =0.5fm
up to a certain spatial region, R andr, .

Differentiation with respect to R and r are treated by
high-order finite-difference formula.



reaction rate [c:mas'1mo|'2]

Convergence with respect to spatial size (R,
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Changes of dominant reaction mechanisms in empirical theory

Low Temperature > High Temperature
Direct 3-alpha collision Binary collision By way of Holy state
(®Be resonance) (12C resonance)
& & B 92keV 2C¥(0,") 379 keV

T =74x%x10"K T =28x107K

Nomoto 1985, NACRE 1999:
Sequential 2-body process assuming secular equilibrium

» h d<aa>(Eaa)
(waa) =3, [, (Be,E,) dE

2 aa

aa

(aBe(E,, ))dE
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Our 1imaginary-time result shows changes of reaction mechanisms
at exactly the same temperatures as those of empirical theory
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Reaction rate Average and variance of energy
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We use almost the same Hamiltonian, coordinate system, and the truncation of the
partial wave as those adopted by K. Ogata et.al, Prog. Theor. Phys. 122 (2009) 1055.
However, the obtained rate is more than 10?° times different at low temperature.

We solve the imaginary-time evolution equation in the finite difference approximation,
while in the CDCC method, basis function expansion is introduced.

To clarify the origin of the difference, we solve the imaginary-time equation
employing the coupled-channels method (basis function expansion).



Radial Schroedinger equation in imaginary-time

0 n o° n o
-—— R,G)=|— — Vi(r,R R
Cule R )| L T v R R )

Up to now, we solved it as a differential equation.

Instead, we solve the equation using basis function expansion.
We first solve a—a 2-body problem.

J, drv (rw,(r) =,

We then expand 3-body wave function with the basis

u(r,R,8)= Zmﬂ w,(r)

0 n’ 82
_@Zn(R ﬂ):|:—2M 5R2 :|Zn R ﬁ Zvnn Zn R ﬁ)

If we use a complete set {w,(r)}, then the coupled-channel calculation gives completely
the same result as that we shows previously. However, i1f we make a truncation,
the result may be different.




Coupled Channel Calculation [dr =0.5 fm, Nr = 1200, r_. = 600 fm]

reaction rate [cmﬁs'1mol'2]

N,...=1 (single channel): overestimate by 10!
N,...=400 (E_,=45.4 MeV): still overestimate by 1012

N,..x=1200 (all channels) coincides with result without channel expansion.

Very slow convergence with respect to increase of channel number.
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Why the single channel calculation
so much overestimates the reaction rate?
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Coulomb barrier for “Channel-1"
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Since o, and a, are far away, R ;:

o, feels very small barrier.
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reaction rate [cm65'1mol'2]
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Though empirical and imaginary-time theories look very different,
calculated rate 1s almost the same.

Nomoto 1985, NACRE 1999: Imaginary-time theory
Sequential 2-body process
A 2241
- h d{aa (Eaa) | H +‘Ef‘ 5 +
o T | R R RS

——

We next examine the relation analytically using R-matrix theory.




Derivation of “Breit-Wigner formula” from imaginary-time theory

We start with the imaginary-time formula for reaction rate

) Zﬂﬁzﬂ 2 87 - H—E, 24+1 )
r(ﬂ)_[ 7 }m((zml)!!)zn%@'fmf Maff ( he ] "M

B, )

Spectral representation of the Hamiltonian

( ) Zf( )‘nlm nlm‘+ZJ. dEf ¢Elm ¢Elm‘ UE|(r)—>(%jésin(kr—%+5,j

nim

Continuum wave function around resonance energy (R-matrix theory)
1

0al0) 1,01 O e MErsE) e

27 (E, +A,(E)-E) +T

Approximate spectrum representation of the Hamiltonian effective around resonance

f(H)—)%‘gﬁr,m G| €E 1 T I (E) £(E)

7 (E, +A,(E)-E)+T,(E)/ 4

Putting this relation to the rate expression in the imaginary-time theory,
we main obtain the “Breit-Wigner formula” for the reaction rate.



Derive the empirical formula in the imaginary-time theory

Two basic assumptions for microscopic 3-body Hamiltonian
1. The Hamiltonian is separable, into a-a and o-*Be parts

H=h,+h,
2. Hoyle state is described by a product of a—a and a-3Be resonant wave functions.

o, ~ 4 (F)ps(R)

Approximate spectral representation of H using R-matrix theory

A 1 r (SBe; E )
f g " o
(H )—)‘¢H ><¢H U E.. oy (Er<8Be)+Ar(Eaa)_ Em)2 +Fr(Ew)/4
X j dEagBe I 1_‘r (12 C; EaSBe )

27 (Ef (12 C)+ Af (EagBe )_ EaSBe )2 T rr (EaSBe )/ 4
x f (EW + EagBe)

N

Put it in the rate expression of the imaginary-time theory

A 24+1
(aaa) o« <¢f ‘Miﬂe‘/’ﬁ (ﬁj FA)M/J ¢f>

hic




Triple-alpha reaction rate derived from imaginary-time theory

S oom? Y
<aaa>=6-3{ j
M KT

g Fa(gBe;Eaa)

We ignore energy

o fae . ! /—R&EQSB) shift A(E)

E,, +E E,+E, —E(2c2 Y™
X eXp| — oo a®Be T (12C oo a®Be 2
KT 4

E(2C0,7)-E(2C;2")

This expression mostly coincides with that of NACRE
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There are a few minor differences.

ra (12 C; EagBe )
(Er (IZC)_ EagBe )2 +T, (EaSBe )/4 # (

Imaginary-time theory NACRE

ra (12 C; EaSBe )
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Summary

We have developed the imaginary-time theory for the radiative capture reaction rate.

It does not require any scattering solution to calculate reaction rate

We have applied the imaginary-time theory to the triple-alpha reaction rate.

We can calculate a convergent reaction rate.

The calculated reaction rate accurately coincides with that of NACRE

Changes of reaction mechanisms occur at exactly the same temperature of

those of NACRE.

We clarified that the truncation in the coupled-channel method gives larger reaction rate
at low temperature.

Using R-matrix theory and assuming separable approximation,

we may derive an analytical “Breit-Wigner formula” in the imagianry-time theory,
which almost coincide with the formula of NACRE

Future task:

Contributions of high partial wave components
Calculation imposing exact symmetry of 3-alpha particles.



