Nucleon density distributions extracted from proton elastic scattering at intermediate energies

Juzo ZENIHIRO, RIKEN Nishina Center
Contents

1. Nucleon density distribution
2. How to see nucleons?
3. Proton elastic scattering and some results
 - Pb isotopes
 - Neutron skin vs EOS
4. Unstable nuclei -ESPRI project-
1. Nucleon density distribution
How are nucleons (p, n) distributed in a nucleus? : ρ_p, ρ_n

fundamental and direct information to constrain nuclear structure or reaction models

→ Shell structure
→ Saturation property
→ Halo, skin structure → nuclear matter

EOS with isospin asymmetry

Neutron skin thickness vs. Symmetry energy
2. How to see nucleons?
Start from Hofstadter’s experiments – nuclear form factors –

Electron scattering

\[\frac{d\sigma}{d\Omega} = \left| F^{A}_{ch}(q) \right|^2 \frac{d\sigma}{d\Omega} \text{ Mott} \]

\[F^{A}_{ch}(q) \Leftrightarrow \rho^{A}_{ch}(r) \]

\[F^{p}_{ch}(q) \cdot F^{p}_{p}(q) \Leftrightarrow \rho^{p}_{p}(r) \]

R. Hofstadter
(Nobel prize in 1961)

Proton scattering

\[\rho^{p}_{p}(r), \rho^{n}_{n}(r) \]

Similarly...

Nuclear matter

\[F^{p+n}_{p+n}(q) \Leftrightarrow \rho^{p+n}_{p+n}(r) \]
\(\rho_{\text{ch}}(r), \rho_p(r), \rho_n(r) \)

- **Stable nuclei**
 - Nuclear charge distribution \(\rho_{\text{ch}}(r) \)
 - EM probe (very simple)
 - For example, \(r_{\text{ch}} =^{208}\text{Pb} : 5.5010(9) \text{ fm} \) (0.02\% accuracy)
 - Proton density distribution \(\rho_p(r) \) : derived from \(\rho_{\text{ch}}(r) \)
 - Neutron density distribution \(\rho_n(r) \)
 - Hadronic probe (very complicated)
 - Suffering from large uncertainties (~1\% accuracy) Incomplete knowledge of NN interaction inside nucleus
 - Our work

- **Unstable nuclei**
 - Little information about \(\rho_{\text{ch}}(r), \rho_p(r), \rho_n(r) \)!
 - SCRIT for \(\rho_{\text{ch}}(r) \) : e-RI collision
 - ESPRI for \(\rho_p(r), \rho_n(r) \) : Our work
3. Proton elastic scattering and some results

The case of Pb isotopes
300 MeV proton

Good probe to extract interior information of nucleus
 – Interact with both neutrons and protons
 – long mean free path (~2fm)
 → interior structure (→ surface structure)
 – one-step reaction is dominant
 → simple description; Relativistic Impulse Approximation (RIA)
RIA framework

- Dirac $t\rho$-optical potential: single folding of NN amplitude (t) & densities (ρ)
 - NN amplitude; 10 mesons’ coupling including both direct & exchange terms are tuned by free NN phase shift analysis (RLF model by C. J. Horowitz)
 \[F = F^S + F^V \gamma^\mu_{(0)}\gamma_{(1)\mu} + F^{PS} \gamma_{(0)}^5 \gamma_{(1)}^5 \]
 \[+ F^T \sigma^\mu_{(0)}\sigma_{(1)\mu\nu} + F^A \gamma_{(0)}^\mu \gamma_{(0)}^\nu \gamma_{(1)}^5 \gamma_{(1)}^\mu \]
 - For spin-0 nucleus only Scalar & Vector component remain
 \[U = \frac{-4\pi i\text{lab}}{M} [F_{S0}\rho_S + \gamma_0 F_{V0}\rho_V] \]
 - Relatively good agreement with p-A scattering data, particularly, analyzing powers above 100 MeV

- Not enough to extract densities
 - Need effective NN interaction inside nuclear medium
How to extract neutron densities from proton elastic scattering?

RIA ($t\rho$ optical potential)

Effective NN interaction

+ folding

Nucleon density distribution:

- $\rho_p^V(r)$, $\rho_n^V(r)$, $\rho_p^S(r)$, $\rho_n^S(r)$

input

Modify the RLF interaction to explain real data (^{58}Ni)

Fixed

- $\rho_p^V(r)$: unfolding $\rho_{ch}(r)$
- $\rho^S = 0.96 \rho^V$

Free parameter

- $\rho_n^V(r)$: minimize the χ^2

output

Calculation

$ds/d\Omega, A_y, Q$

χ^2 method

Experimental data

$ds/d\Omega, A_y, Q$
1. Realistic proton density distributions

Unfolding $\rho_{ch}(r)$

$$\rho_{ch}(r) = \int \rho_p(r)\rho_{ch}^p(|r-r'|)dr' + \int \rho_n(r)\rho_{ch}^n(|r-r'|)dr'$$

+ spin - orbit term

$$= \int \rho_p(r)\tilde{G}_E^p(|r-r'|)dr' + \int \rho_n(r)\tilde{G}_E^n(|r-r'|)dr'$$

+ spin - orbit and Darwin - Foldy term

negligible (~ 0.01 fm)

Fourier transform

$$\tilde{\rho}_{ch}(q) \equiv \tilde{\rho}_p(q)G_E^p(q) + \tilde{\rho}_n(q)G_E^n(q)$$

$$\langle r^2 \rangle_{ch} = \langle r^2 \rangle_p + \langle r^2 \rangle_{ch}^p + \frac{N}{Z} \langle r^2 \rangle_{ch}^n$$

Sachs form factors

$$\sim (0.89)^2 \text{ fm}^2$$

$$\sim -0.11 \text{ fm}^2$$

Neutron charge contribution

Sum of Gaussians

$$\rho_{SOG}(r) = \sum A_i (e^{-(r-R_i)^2/\gamma^2} + e^{-(r+R_i)^2/\gamma^2})$$

$$A_i = \frac{ZQ_i}{2\pi^{3/2}\gamma^3(1+2R_i^2/\gamma^2)}$$

$$\sum Q_i = 1$$
$G_E^{p,n}$ from $e-p$ or $-d$ elastic data

- low-$Q^2(<1\text{GeV})$ analysis by I. Sick [PLB576, 62(2003)]
 - Continued-fraction expansions
 - Model independent nucleon charge radius:
 \[
 r_{ch}^p = 0.895(18) \text{ fm} \\
 (r_{ch}^n)^2 = -0.113 \text{ fm}^2
 \]

\[
G_E^p(Q^2) \propto \frac{1}{1 + \frac{b_1 Q^2}{1 + \frac{b_2 Q^2}{1 + \ldots}}}
\]

However, recent study by muonic-hydrogen Lamb shift says $r_{ch}^p = 0.84184(67) \text{ fm}$... still under discussion. [Nature 466, 213(2010)]
Extracted proton density distributions

- Solid: extracted $\rho_p(r)$
- Blue dotted: Relativistic Hartree calculation
- Green: Skyrme-Hartree-Fock calculations

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>r_{ch} (fm)</th>
<th>r_p (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>58Ni</td>
<td>3.772(4)</td>
<td>3.680</td>
</tr>
<tr>
<td>204Pb</td>
<td>5.479(2)</td>
<td>5.420</td>
</tr>
<tr>
<td>206Pb</td>
<td>5.490(2)</td>
<td>5.433</td>
</tr>
<tr>
<td>208Pb</td>
<td>5.503(2)</td>
<td>5.442</td>
</tr>
</tbody>
</table>

2012/7/17
2. Scalar density distributions

\[\rho^S(r) \approx \left\{ \frac{1 - \frac{3 k_F^2}{10 M^*}}{\rho^V(r)} \right\} \rho^V(r). \quad \text{(RMF by Serot and Waleck)} \]

- 0.93 (interior) \(-\) 0.98 (surface)
- \(k_F\) \(-\) 1.3 fm\(^{-1}\), \(M^*\) \(-\) 0.6M at saturation

For medium or heavy nuclei (\(A>56\))

- 0\(^\text{th}\) moment (volume): proton, neutron

\[\int \rho^S(r) \, dr \approx 0.95 \sim 0.96 \int \rho^V(r) \, dr. \]

- 2\(^\text{nd}\) moment (size): proton, neutron

\[\int r^2 \rho^S(r) \, dr \approx 0.96 \int r^2 \rho^V(r) \, dr. \]
3. Medium modification of RLF NN interaction

Medium effect

$$g_j^2 \to g_j^*^2 \equiv \frac{g_j^2}{1 + a_j \rho(r) / \rho_0},$$

$$m_j \to m_j^* \equiv m_j \left(1 + b_j \rho(r) / \rho_0 \right),$$

$j = \sigma, \omega$.

→ Phenomenological parameters; a_j, b_j
→ Universal form of density-dependent terms
→ At $\rho=0$, same as free NN interaction

Need to calibrate with real data

H. Sakaguchi et al., PRC57, 1749.
Calibration of medium effect by ^{58}Ni

^{58}Ni

Various experimental & theoretical results say:

$r_n \cong r_p$: almost the same size

$$\rho_n(r) = \frac{N}{Z} \rho_p(r)$$

Ni (N=20-62)

- SIII
- Sly4
- SkM*
- Sly5
- SkP

58Ni
Calibration of medium effect by ^{58}Ni

- Four free parameters: a_j, b_j
 ($j = \sigma$, ω)
- $\rho_p(r)$: unfolding $\rho_{ch}(r)$
- $\rho_n(r) = (N/Z)\rho_p(r)$

minimum χ^2 search

Calibrated medium effect parameters

<table>
<thead>
<tr>
<th>j</th>
<th>σ</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_j</td>
<td>-0.044(26)</td>
<td>0.037(40)</td>
</tr>
<tr>
<td>b_j</td>
<td>0.097(13)</td>
<td>0.075(21)</td>
</tr>
</tbody>
</table>

Differential cross sections & analyzing powers of 300 MeV polarized p-^{58}Ni elastic scattering

$\chi^2_{\text{min}}/\nu \sim 10.$

- RIA(MH model) + DH density
- RIA(MH model) + realistic density
- RIA(medium effect) + realistic density

$\frac{d}{d\Omega}\left(\text{mb/st}\right)$

$\frac{d}{d\Omega}\left(\text{mb/st}\right)$

$58\text{Ni}(p,p)^{58}\text{Ni}$

$E_p = 295$ MeV
-Pb case-
Experiment @RCNP

Conditions (RCNP-E248)
- Scattering observables: $d\sigma/d\Omega, A_y$
- Beam energy: 295 MeV
- Beam polarization: 70~80%
- Energy resolution: ~100 keV
- Angular & momentum transfer range: 9~45°, 0.5~3.5 fm$^{-1}$
- Targets: 204,206,208Pb, 58Ni

- 2 cyclotrons in a coupled mode: AVF (53 MeV) and Ring (295 MeV) cyclotron
- WS beam line in West Exp. Hall
- Vertically polarized proton beam at $E_p = 295$ MeV
- Achromatic transport on target. Spot size: ~ 1 mm-φ
Comparison with theoretical predictions

- Relativistic impulse approximation by Murdock and Horowitz (IA1):
 - $t\rho$ optical potential
 - relativistic Love-Franey NN interaction
 - Relativistic Hartree densities
- RIA for 58Ni case by MH model, but
 - realistic nucleon densities
- Global optical potential

\[F = F^S + F^V \gamma_{(0)}^{\mu} \gamma_{(1)}^{(1)} + F^{PS} \gamma_{(0)}^{5} \gamma_{(1)}^{5} + F^{T} \sigma^{\mu\nu} \sigma_{(0)}^{(1)\mu\nu} + F^{A} \gamma_{(0)}^{5} \gamma_{(0)}^{\mu} \gamma_{(1)}^{5} \gamma_{(1)\mu} \]

Extraction of neutron densities of Pb isotopes

- Fixed medium effect parameters by \(^{58}\)Ni data: \(a_j, b_j (j = \sigma, \omega)\)
- \(\rho_p(r)\): unfolding \(\rho_{ch}(r)\)
- \(\rho_n(r)\): SOG model independent function

\[
\rho_n^{SOG}(r) = \sum A_i \left(e^{-(r-R_i)^2/\gamma^2} + e^{-(r+R_i)^2/\gamma^2} \right),
\]

\[
A_i = \frac{NQ_i}{2\pi^{3/2}\gamma^3 (1 + 2R_i^2/\gamma^2)}, \sum Q_i = 1
\]

Fixed: \(\gamma, R_i\) (same as \(\rho_{ch}(r)\))
Free parameters: \(Q_i \ (i=1\sim12)\)

minimum \(\chi^2\) search

reduced \(\chi^2_{\text{min}} \approx 4.\)
Estimation of error-envelopes of $\rho_n(r)$

- Error-envelopes due to exp. errors:
 \[\chi^2 \leq \chi^2_{\text{min}} + \Delta\chi^2 \approx 11 \]

- Comparison with previous $\rho_n(r)$:
 3-parameter-Gaussian (3pG) by L. Ray (Ref.[58])

<table>
<thead>
<tr>
<th>ρ_n type</th>
<th>χ^2/ν (v=47)</th>
<th>r_n (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3pG</td>
<td>255/47=5.4</td>
<td>5.593</td>
</tr>
<tr>
<td>SOG</td>
<td>192/47=4.1</td>
<td>5.653(30)</td>
</tr>
</tbody>
</table>

208Pb case

- Figure (a): Comparison with previous $\rho_n(r)$
 - 3-parameter-Gaussian (3pG) by L. Ray (Ref.[58])
 - Percent deviation:
 \[d = 200 \times \frac{\sigma_{\text{exp}} - \sigma_{\text{cal}}}{\sigma_{\text{exp}} + \sigma_{\text{cal}}} \] (\%)
 - 0.06 fm (1%)

- Figure (b): Comparison of $\rho_n(r)$ at $E_p=295$ MeV
 - DH
 - 3pG
 - this work

NP seminar
Estimation of error-envelopes of $\rho_n(r)$

- $\chi^2_{\text{min}}/\nu \sim 4$: incompleteness of the theoretical model as well as unknown experimental systematics
- Error-envelopes due to model uncertainties:
 - S realizes $\chi^2_{\text{min}}/\nu = 1$.

\[
\tilde{\chi}^2 = \frac{\chi^2}{S^2} = \sum \left(\frac{y_{\text{exp}} - y_{\text{calc}}}{S \cdot \delta y_{\text{exp}}} \right)^2,
\]

\[
\tilde{\chi}^2_{\text{min}} = \frac{\chi^2_{\text{min}}}{S^2} = \nu \Leftrightarrow S = \sqrt{\frac{\chi^2_{\text{min}}}{\nu}}.
\]

\[
\tilde{\chi}^2 \leq \tilde{\chi}^2_{\text{min}} + \Delta \chi^2 \\
\chi^2 \leq \chi^2_{\text{min}} + \Delta \chi^2 \times S
\]

$\chi^2 = \chi^2_{\text{min}} + \Delta \chi^2 \times \left(\frac{\chi^2_{\text{min}}}{\nu} \right)$.
Neutron root-mean-square radii

- 2 types of errors of r_n: due to experimental errors only (δr_n^{std}) \rightarrow ~0.5 %
- total errors including model & unknown systematic uncertainties (δr_n^{mdl}) \rightarrow ~1 %

(Extracted r_n, δr_n)

<table>
<thead>
<tr>
<th></th>
<th>r_{ch}</th>
<th>r_p^{unfold}</th>
<th>r_n</th>
<th>δr_n^{std}</th>
<th>δr_n^{mdl}</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{204}Pb</td>
<td>5.479(2)</td>
<td>5.420(2)</td>
<td>5.598</td>
<td>+0.029</td>
<td>+0.047</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.020</td>
<td>-0.059</td>
</tr>
<tr>
<td>^{206}Pb</td>
<td>5.490(2)</td>
<td>5.433(2)</td>
<td>5.613</td>
<td>+0.026</td>
<td>+0.048</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.026</td>
<td>-0.064</td>
</tr>
<tr>
<td>^{208}Pb</td>
<td>5.503(2)</td>
<td>5.442(2)</td>
<td>5.653</td>
<td>+0.026</td>
<td>+0.054</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.029</td>
<td>-0.063</td>
</tr>
</tbody>
</table>
Neutron skin thicknesses Δr_{np}

- Comparison with previous experimental results
- Comparison with several mean-field models
 - relativistic: NL3, DD-ME2, DD-PC1, FSUGold
 - non-relativistic: SkM*, SkP, Sly4, Skxs20

Dependent on structure and/or reaction models

Evaluate reaction model ambiguity
Nuclear matter EOS with isospin asymmetry δ

- EOS of nuclear matter $E(\rho,\delta)$: the energy per nucleon

\[E(\rho, \delta) = E(\rho, 0) + S(\rho)\delta^2 + O(\delta^4) \]

- EOS of symmetric nuclear matter $E(\rho, 0)$:

\[E(\rho, 0) = E(\rho_{\text{sat}}, 0) + \frac{K_0}{2} \varepsilon^2 + O(\varepsilon^3) \]

\[\rightarrow E(\rho_{\text{sat}}, 0) \sim -16 \text{ MeV}, \quad K_0 \sim 240 \text{ MeV} \]

- The symmetry energy $S(\rho)$:

\[S(\rho) = S(\rho_{\text{sat}}) + L\varepsilon + \frac{K_{\text{sym}}}{2} \varepsilon^2 + O(\varepsilon^3) \]

\[\rightarrow \text{Still less certain!} \]

\[\delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}, \quad \varepsilon = \frac{\rho - \rho_{\text{sat}}}{3\rho_{\text{sat}}} \]
Δr_{np} for 208Pb vs. Symmetry energy

\[E(\rho, \delta) = E(\rho, 0) + S(\rho) \delta^2 + O(\delta^4) \]

\[S(\rho) = S(\rho_{\text{sat}}) + L \varepsilon + \frac{K_{\text{sym}}}{2} \varepsilon^2 + O(\varepsilon^3) \]

- **Strong correlation!**

\[\varepsilon = \frac{\rho - \rho_{\text{sat}}}{3\rho_{\text{sat}}} \]

Determine the slope coefficient \(L \) of \(S(\rho) \) → neutron matter EOS

Impact on neutron star structure
- Radius, cooling system, etc.

L.-W. Chen et al., PRC82, 054314.
Δr_{np} for ^{208}Pb vs the symmetry energy coefficients

- Plot many mean-field predictions
- The incompressibility and symmetry energy coefficients:
 \[K_0, S(\rho_{\text{sat}}), L, K_{\text{sym}} \]
- Strong correlation:
 \[\Delta r_{np} \text{ vs } S(\rho_{\text{sat}}), \Delta r_{np} \text{ vs } L \]
- Perform linear fitting and deduce the constraint range of $S(\rho_{\text{sat}})$ and L.

\[K_0 \]
\[K_{\text{sym}} \]
Δr_{np} for 204,206Pb vs the symmetry energy coefficients

![Graphs showing the relationship between Δr_{np} and the symmetry energy coefficients for 204,206Pb.](image)
The symmetry energy coefficients deduced from Δr_{np} for 204,206,208Pb

- Deduced region of the symmetry energy coefficients: weighted average

$$S(\rho_{\text{sat}}) = 33.0 \pm 1.1 \text{ MeV}$$
$$L = 67.0 \pm 12.1 \text{ MeV}$$

→ comparable with previous studies but still large

!!Note that 3 ranges in plot are due to experimental errors only!!
Extraction of density distributions in nuclei

Polarized proton elastic scattering at 300MeV (RCNP, Osaka University)
⇒ We have succeeded in extracting neutron density distributions of Sn, Pb isotopes systematically.

Stable nuclei

Sn

Pb

Unstable nuclei ➔ ESPRI project

2012/7/17

NP seminar
4. Unstable nuclei - ESPRI project -

Application to nuclei with large isospin asymmetry
Unstable nuclei → experimental data itself is rare!

→ Elastic Scattering of Protons with RI beam (ESPRI) project
 ✓ To measure angular distributions of differential cross sections
 ✓ To deduce the proton & neutron densities of unstable nuclei

Recoil Proton Spectrometer (RPS)

<table>
<thead>
<tr>
<th>RPS</th>
<th>Recoil drift chamber</th>
<th>436x436 mm² (x-y-x’-y’)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>plastic scintillator</td>
<td>440x440 mm² x 2 mm¹</td>
</tr>
<tr>
<td></td>
<td>Nal(Tl) calorimeter</td>
<td>450x50 mm² x 50 mm¹</td>
</tr>
</tbody>
</table>

Target: Solid hydrogen, Φ30 - 1 mm¹

Large momentum transfer region

θ_lab = 66 - 80°, Ep=20 – 120 MeV, ΔΩ~10 msr/deg.

Small momentum transfer region

θ_lab = 75 - 85°, Ep=5 – 50 MeV ΔΩ~14 msr/deg.

- Missing mass spectrometer: \(P^\mu_{\text{beam}} + P^\mu_p \rightarrow E_x \) (\(\Delta E_x \sim 400 \text{ keV} \))
- Cover extensive momentum transfer region: up to \(\sim 2.5 \text{ fm}^{-1} \)

2012/7/17

NP seminar
Kinematics of ESPRI

Inverse kinematics: fixed probe

Unstable nucleus

A

300 MeV/A

p

Detector

θ_{lab.}

A

p

It has been difficult to measure in a wide momentum transfer region. Experiments in the lower momentum transfer region (<1 fm⁻¹) have been done so far.
- RIKEN, GANIL, MSU: <100 MeV/A
- GSI (He, Li isotope): 700 MeV/A

H(⁹C, p)⁹C Ep=300 MeV/A

Large dE/dθ!!

2.5fm⁻¹ 1fm⁻¹

Ex=30 MeV g.s.

Ex=2.2 MeV

E_p=300 MeV/A

H(²⁷Ni, p)²⁷Ni
Recoil Proton Spectrometer (RPS)

<table>
<thead>
<tr>
<th>Material</th>
<th>Para H₂</th>
<th>RDC</th>
<th>pΔE</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective area</td>
<td>φ 30 mm</td>
<td>436 x 436 mm²</td>
<td>440 x 440 mm²</td>
<td>431.8 x 45.72 mm²</td>
</tr>
<tr>
<td>Thickness</td>
<td>1 mm</td>
<td>69.4 mm</td>
<td>2.53 / 3.09 mm</td>
<td>50.8 mm</td>
</tr>
<tr>
<td>Resolution</td>
<td>500 μm</td>
<td>TOF : 0.1 nsec</td>
<td>0.3 % (80 MeV)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- RPS: Recoil Proton Spectrometer
- SHT: Solid H₂ Target
- NaI(Tl): Sodium Iodide with Thallium activator
Para Solid Hydrogen Target (p-SHT)

Normal hydrogen at 300 K

• $para-H_2 : ortho-H_2 = 1: 3$

Ortho-para converter (FeO(OH) catalysis)

achieve ~100% $para-H_2$!!

Success of 1-mm-thick 30-mm-ϕ SHT !!!

Y. Matsuda et al.

More than 100 times larger than normal hydrogen. The same as metallic element

0.72: ratio of ortho H_2 concentration (normal H_2)

R & D at HIMAC

◆ Test of the detector system
 ✓ Each detectors were developed at several accelerator facilities.
 ✓ Total setup was tested using 9,10,11C, 20O at HIMAC

→ Successfully performed
R & D at GSI

Be Production Target

1st Degrader

2nd Degrader + Momentum

Full tracking + 2ndary H Target

Exp. area S4

Secondary beam
- $^{66,70}\text{Ni}$
- 300 MeV/u
- $3 \times 10^3 (^{70}\text{Ni}), 2 \times 10^4 (^{66}\text{Ni})$/spill

Target
- SHT 1 mm2 (8.6 mg/cm2)

Primary beam
- ^{86}Kr (34+)
- 520 (^{70}Ni), 540 (^{66}Ni) MeV/u
- 2-3x1010 counts/spill

Spill structure
- 3 seconds (duty factor 33%)

Measurement time
- 8+1 (^{70}Ni), 2+1 (^{66}Ni) days
Setup at S4(S2)
Wedge Degrader
Lycca chamber

MUSIC
Isomer Tagging System:
Wedge degrader + PL. Scinti. + stopper + HPGe + PL. Scinti.

Lycca chamber: Total energy calorimeter
Establish the experimental method

First measurements!!

Preliminary results of GSI exp.
Simultaneous extraction of proton and neutron density distributions

• For unstable nuclei, no nuclear charge information.
• Is it possible to extract both $\rho_p(r)$ & $\rho_n(r)$ from proton elastic scattering?
 → Maybe possible
 1. pp & pn interactions are different and have different energy-dependences from each other. (isospin dependence) → sensitive to light nuclei
 2. Central part of nuclear optical potential changes shallow attractive to shallow repulsive from 200 to 300 MeV (-5 ~ 10 MeV), while the nuclear Coulomb potential does not change and relatively large (> 10 MeV) → sensitive to heavy nuclei

→ We propose two-energy analysis method to extract both proton and neutron density simultaneously from 200 & 300 MeV proton elastic scattering.
Feasibility test of simultaneous extraction of $\rho_p(r)$, $\rho_n(r)$

Simulation results from *pseudo-data* ($ds/d\Omega, A_y$) of ^{208}Pb, $^{14}\text{C}(p,p)$ at 200, 300 MeV with 3% experimental errors.

\[\delta r/r \sim 0.35\% \]

208\text{Pb}
\[Z=82 \]

\[\delta r/r \sim 0.8\% \]

14\text{C}
\[Z=6 \]

A proposal of test of this method using real data of two-energy proton elastic scattering from Zr isotopes was approved and the experiment has been performed at April 2012!
⇒ Data reduction is now ongoing.
ESPRI at RIBF

Toward extraction of proton & neutron densities of unstable nuclei

- Most suitable energy & high intensity
- ^{16}C: first ESPRI measurement with high statistics at RIBF (NP0709-RIBF40)
- ^{132}Sn: flag-ship nuclei as a next step from ^{208}Pb (NP1112-RIBF79)
 - n-skin thickness to constrain the symmetry energy of nuclear EOS
 - Test of the measurement of isomer-^{132}Sn(p,p) reaction
 - High-rate tolerance of beam-line detector is required (~1MHz)

Future perspective...
- ESPRI Combined with Rare RI Ring or polarized proton target
 - Cross sections or analyzing powers of p-^{78}Ni, ^{100}Sn
Expected results of 132Sn

- Test of simultaneous extraction of $\rho_p(r)$, $\rho_n(r)$ of 132Sn from pseudo-data of differential cross sections
- Using RIA and relativistic-Hartree calculations as nucleon density distributions.

<table>
<thead>
<tr>
<th></th>
<th>g.s. (input)</th>
<th>g.s. (extracted)</th>
<th>$\delta r/r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_n</td>
<td>4.916</td>
<td>4.907(23)</td>
<td>0.46%</td>
</tr>
<tr>
<td>r_p</td>
<td>4.650</td>
<td>4.612(49)</td>
<td>1.0%</td>
</tr>
<tr>
<td>Δr_{np}</td>
<td>0.266</td>
<td>0.295(54)</td>
<td>--</td>
</tr>
</tbody>
</table>
Summary of ESPRI

1. R & D at HIMAC, Chiba and GSI, Germany.
 ✓ HIMAC-P213: ^9C, $^{10,11}\text{C}$, ^{20}O (FY2006-2008) → Y. Matsuda to be submitted
 ✓ GSI-S272: $^{66,70}\text{Ni}$ (FY2009-2010) → analysis is ongoing by S. Terashima
 → 1mm-t & 30mm-Ø pSHT (NIMA643,6(2011)), energy resolution of ~500keV(σ)
 → still large experimental errors by low statistics →ESPRI@RIBF

2. Test of the simultaneous extraction of $\rho_p(r)$ & $\rho_n(r)$ from proton elastic scattering data at 200, 300 MeV/u
 ✓ two-energy analysis method is now developed with stable nuclei.
 ✓ RCNP-E366: $^{90,92,94,96}\text{Zr}$ (FY2011-2012)
 □ RCNP-E375: $^{12,13,14}\text{C}$ (FY2012-2013)
 → feasibility test by generating pseudo-data shows good results.
 → Data reduction is ongoing →ESPRI@RIBF

3. ESPRI @ RIBF with high-intensity RI beam for more precise data
 □ NP0709-RIBF40: $^{16,18}\text{C}$ (light unstable nuclei; already approved & ready)
 □ NP1112-RIBF79: ^{132}Sn (heavy unstable nuclei; approved by 2011 NP-PAC)
Elastic Scattering of Protons with RI beams (ESPRI) project

Collaborators

S. Terashima (Beihang Univ.)
Y. Matsuda (Kyoto Univ.)
H. Sakaguchi (RCNP)
H. Otsu (RIKEN)

RIKEN
H. Takeda
K. Ozeki
K. Yoneda
K. Tanaka
M. Takechi
T. Ohnishi
M. Dozono
Kyushu Univ.
S. Sakaguchi

Tohoku Univ.
T. Kobayashi
Kyoto Univ.
T. Murakami
Miyazaki Univ.
Y. Maeda
Souel Univ.
Y. Sato

RCNP
I. Tanihata
O. H. Jin

GSI
S272 collaborators

NIRS
M. Kanazawa

2012/7/17
NP seminar
Thank you for your attention.