

# Morphometric studies of the "Island of Inversion" (Status and Results of NP0702-RIBF32)

Pieter Doornenbal ピーター ドルネンバル



# Outline

The "Island of Inversion"

In-Beam  $\gamma$  Setup

RIBF32

Fluorine Isotopes

Summary

- "Island of Inversion"
  - ♦ Time-line

• Our Setup

- RIBF/BRS/ZDS
- DALI2@F8
- Atomic background
- Results
  - First RIBF results:  $E(2_1^+)$  in <sup>32</sup>Ne
  - ♦  $E(2_1^+)$  and  $E(4_1^+)/E(2_1^+)$  ratio in <sup>36,38</sup>Mg
  - ♦ First excited state in <sup>29</sup>F

### Geomorphometry

The "Island of Inversion"

In-Beam  $\gamma$  Setup

RIBF32

Fluorine Isotopes

Summary

#### From Wikipedia:

**Geomorphometry** is the science of quantitative land surface analysis. It gathers various mathematical, statistical and image processing techniques that can be used to quantify morphological, hydrological, ecological and other aspects of a land surface. Common synonyms for geomorphometry are geomorphological analysis, terrain morphometry or terrain analysis and land surface analysis. In simple terms, geomorphometry aims at extracting (land) surface parameters (morphometric, hydrological, climatic etc.) and objects (watersheds, stream networks, landforms etc.) using input digital land surface model (also known as digital elevation model) and parameterization software. Extracted surface parameters and objects can then be used, for example, to improve mapping and modelling of soils, vegetation, land use, geomorphological and geological features and similar.

# The "Island of Inversion"

#### **Nuclear Chart**



## Time Line – 1 (1969-1990)



Morphometric studies of the "Island of Inversion"

RIBF Seminar, July 10<sup>th</sup>, 2012 – 7

## Time Line – 2 (1990-2006)



# **Effective Single Particle Energies**



# (Nuclear-)morphometric Studies on the "Island of Inversion"

The "Island of Inversion"

Nuclear Chart
Time Line – 1

(1969-1990)

✤ Time Line – 2 (1990-2006)

♦ ESPE

Nuclear morphometry

In-Beam  $\gamma$  Setup

RIBF32

**Fluorine Isotopes** 

Summary

- What are the exact borderlines of the "Island of Inversion"?
  - Can they be sharply defined?
- Is it an isolated island?
  - ♦ Is there an isthmus to the N = 28 shell closure erosion?
- What is the topography of the "Island of Inversion"?



# In-Beam $\gamma$ -Ray Spectroscopy at the RIBF

Morphometric studies of the "Island of Inversion"

RIBF Seminar, July 10<sup>th</sup>, 2012 - 11

#### **RIBF Overview**



### **BigRIPS** Overview



### **ZeroDegree Spectrometer**



# DALI2 (2008)

The "Island of Inversion"

- In-Beam  $\gamma$  Setup
- ♦ RIBF Overview
- BigRIPS Overview
- ZeroDegree

#### DALI2

- Atomic Background
- RIBF32
- **Fluorine Isotopes**
- Summary

- 180 Nal(TI) detectors
- $\vartheta$  coverage 11° to 165°
- Crystals of large volumes
  - ightarrow large angular coverage per crystal
- $\Delta E/E \approx$ 10(11) % (FWHM) at 100(250) MeV/u
- $\approx$  20% FEP efficiency at 1 MeV
- Thick secondary targets
- S. Takeuchi *et al.*, RIKEN Pr. Rep. 36, 148 (2003)
- "Sophisticated" beam pipe containing several targets





### **Atomic Background**



# **Experimental Results**

Morphometric studies of the "Island of Inversion"

RIBF Seminar, July 10<sup>th</sup>, 2<u>012 – 17</u>

# DayOne Campaign (Dec. 2008)

| The "Island of<br>Inversion"                                                                  | • High intensity <sup>48</sup> Ca primary beam $\approx$ 100 pnA |           |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------|
| In-Beam $\gamma$ Setup<br>RIBF32                                                              | several independent experimental setups                          |           |
| <ul> <li>Closeup View</li> <li>DayOne</li> <li>D(0<sup>±</sup>) in <sup>32</sup>Na</li> </ul> | Reaction Cross Sections (Ohtsubo et al.)                         |           |
| <ul> <li><i>E</i>(2<sup>+</sup>) in <sup>3-</sup>Ne</li> <li>Sunday</li> <li>DALI2</li> </ul> | ◆ <sup>29-32</sup> Ne, <sup>30-34</sup> Na                       | 3 days    |
| <ul> <li>Reconfiguration</li> <li>♦ Applied Settings</li> <li>♦ Tr(a<sup>+</sup>)</li> </ul>  | Coulomb Breakup (Nakamura et al.)                                |           |
| • $E(2_1')$ -<br>Systematics<br>• $^{36,38}$ Mg                                               | ◆ <sup>31</sup> Ne, <sup>19,20,22</sup> C                        | 2.5 days  |
| <ul> <li>Systematics</li> <li>Fluorine Isotopes</li> </ul>                                    | • $\gamma$ -ray Spectroscopy (Scheit <i>et al.</i> )             |           |
| Summary                                                                                       | ♦ <sup>32</sup> Ne                                               | 12 hours  |
|                                                                                               | • $\gamma$ -ray Spectroscopy (Takeuchi <i>et al.</i> )           |           |
|                                                                                               | ♦ <sup>42</sup> Si                                               | cancelled |
|                                                                                               |                                                                  |           |

F

## A Closer Look at the "Island of Inversion"



Prediction by E. K. Warburton et al., Phys. Rev. C 41, 1147 (1990) A. Gade et al., PRL 99, 072502 (2007)

 $^{38}S$ 

<sup>37</sup>A1

 $36M_{f}$ 

 $^{35}$ Na

<sup>34</sup>Ne

 $\frac{?}{2}$ 

?

# DayOne (Dec. 2008) PID in Front of Secondary Target



### **PID Behind Target and \gamma-ray Spectra**



# $E(2^+)$ as Function of N

The "Island of Inversion"

In-Beam  $\gamma$  Setup

RIBF32

Closeup View

DayOne

#### $\bullet E(2^+)$ in $^{32}$ Ne

Sunday

DALI2

Reconfiguration

Applied Settings

 $E(2_1^+)$ -Systematics

✤ <sup>36,38</sup>Mg

Systematics

Fluorine Isotopes

Summary

• lowest  $E(2^+)$  of Ne isotopes

 very good agreement with Utsuno *et al.*,
 PRC 60, 054315 (1999)

 very good agreement with Intruder calculation of Caurier *et al.*, NPA 693, 374 (2001)

 <sup>32</sup>Ne belongs to the "Island of Inversion"

P. Doornenbal, H. Scheit *et al.* Phys. Rev. Lett. 103, 032501 (2009) arXiv:0906.3775



# Sunday <sup>48</sup>Ca (Nov./Dec. 2010)

The "Island of Inversion"

In-Beam  $\gamma$  Setup

RIBF32

Closeup View

DayOne

♦  $E(2^+)$  in <sup>32</sup>Ne

#### Sunday

DALI2 Reconfiguration

Applied Settings

 $E(2_1^+)$ -Systematics

✤ <sup>36,38</sup>Mg

Systematics

**Fluorine Isotopes** 

Summary



Total interaction cross-sections of neutron rich Mg isotopes

# DALI2 (2010-to Present)

The "Island of Inversion"

In-Beam  $\gamma$  Setup

RIBF32

- Closeup View
- DayOne
- ♦  $E(2^+)$  in <sup>32</sup>Ne
- Sunday

#### DALI2 Reconfiguration

- Applied Settings
- $(2^+_1)$ -Systematics
- ✤ <sup>36,38</sup>Mg
- Systematics
- Fluorine Isotopes
- Summary

- Changed configuration of forward angle detectors
- Included DALI1 crystals
- 186 Nal(Tl) detectors
- $\vartheta$  coverage 11° to 165°
- $\Delta E/E \approx$ 10(11) % (FWHM) at 100(250) MeV/u
- ho pprox 20% FEP efficiency at 1 MeV







# **Experimental Settings**

The "Island of Inversion"

In-Beam  $\gamma$  Setup

RIBF32

Closeup View

DayOne

♦  $E(2^+)$  in <sup>32</sup>Ne

Sunday

♦ DALI2

Reconfiguration

#### Applied Settings

 $(2^+_1)$ -Systematics

✤ <sup>36,38</sup> Mg

Systematics

Fluorine Isotopes

Summary

• 2.54 g/cm<sup>2</sup> C, 2.13 g/cm<sup>2</sup> CH<sub>2</sub>, and 3.37 g/cm<sup>2</sup> Pb targets

About one hour to change target + stationary source calibration

| Setting                                               | Measuring Time/h |
|-------------------------------------------------------|------------------|
| C( <sup>40</sup> Si, <sup>38</sup> Mg)                | 15               |
| C( <sup>36</sup> Mg, <sup>36</sup> Mg)                | 6                |
| C( <sup>36</sup> Mg, <sup>35</sup> Mg)                | 9                |
| CH <sub>2</sub> ( <sup>36</sup> Mg, <sup>36</sup> Mg) | 5                |
| Pb( <sup>36</sup> Mg, <sup>36</sup> Mg)               | 15               |
| Pb( <sup>30</sup> Ne, <sup>30</sup> Ne)               | 5                |
| C( <sup>30</sup> Ne, <sup>30</sup> Ne)                | 3                |
| C( <sup>30</sup> Ne, <sup>29</sup> Ne)                | 3                |
| C( <sup>30</sup> Ne, <sup>29</sup> F)                 | 3                |
| $CH_2(^{30}Ne,^{30}Ne)$                               | 2                |
| total                                                 | 66               |

# $E(2_1^+)$ -Systematics



E(2<sup>+</sup>) is a qualitative indicator of "magicity"
a more quantitative indicator is the B(E2)↑ value

RIBF Seminar, July 10<sup>th</sup>, 2012 – 26





Doppler corrected  $\gamma$ -ray energy

 $2_1^+$  Level and  $E(4_1^+)/E(2_1^+)$  ratio Systematics in sd - pf shell



<sup>32</sup>Mg 4<sup>+</sup>: S. Takeuchi *et al.*, Phys. Rev. C 79, 054319 (2009)
 <sup>34</sup>Mg: K. Yoneda *et al.*, Phys. Lett. B 499, 233 (2001)



SDPF-M: Y. Utsuno *et al.*, Phys. Rev. C 60, 054315 (1999) SDPF-NR (0ħω): F. Nowacki and A. Poves, Phys. Rev. C 79, 014310 (2009) Skyrme-QRPA: K. Yoshida, Eur. Phys. J. 42, 583 (2009) 3DAMP+GCM: J. M. Yao *et al.*, Phys. Rev. C 83, 014308 (2011)

Morphometric studies of the "Island of Inversion"

# Structure of neutron-rich Fluorine Isotopes

#### sd-shell Interactions



Morphometric studies of the "Island of Inversion"

#### sd-shell Interactions II

**USD**, 1984 **USDB**, 2006 22 22 2.0 2.0 1.5 20 1.5 20 1.0 1.0 0.5 18 0.5 18 0 0 16 H -0.5 16 -0.5 **Proton Number Proton Number** -1.0 -1.0 14 H -1.5 -1.5 14 12 12 10 10 8 8 6 6 12 16 18 20 22 8 10 12 16 18 6 8 10 6 14 14 Neutron Number Neutron Number

FIG. 9. (Color) Difference between the experimental and theoretical (USD) ground-state binding energies. A positive value indicates that experiment is more bound than theory.

B. H. Wildenthal, Prog. Part. Nucl. Phys. 11, 5 (1984) B. Alex Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006)



20

22

#### **Previous Measurements in Fluorine Isotopes**



## In-Beam $\gamma$ -Ray Spectroscopy of $^{27,29}F$



USDA/B: B. Alex Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006) SDPF-M: Y. Utsuno *et al.*, Phys. Rev. C 60, 054315 (1999)

### **Binding Energies of F isotopes**



# **Breaking of the Doubly-Magic Structure in** <sup>28</sup>O



# Summary

Morphometric studies of the "Island of Inversion"

RIBF Seminar, July 10<sup>th</sup>, 2012 - 36

# RIBF32 Collaboration (Dec. 2010 Campaign)

The "Island of Inversion"

In-Beam  $\gamma$  Setup

RIBF32

Fluorine Isotopes

Summary

Collaboration



N. Aoi<sup>1</sup>, P. Doornenbal<sup>2</sup>, E. Ideguchi<sup>3</sup>, N. Kobayashi<sup>4</sup>, Y. Kondo<sup>4</sup>, G. Lee<sup>4</sup>, J. Lee<sup>2</sup>, K. Li<sup>2,5</sup>, M. Matsushita<sup>2</sup>, S. Michimasa<sup>3</sup>, T. Motobayashi<sup>2</sup>, H. Sakurai<sup>2</sup>, **H. Scheit<sup>2,6</sup>**, D. Steppenbeck<sup>2</sup>, M. Takechi<sup>2,7</sup>, **S. Takeuchi<sup>2</sup>**, Y. Togano<sup>2,7</sup>, and H. Wang<sup>2,5</sup>

<sup>1</sup>RCNP, <sup>2</sup>RIKEN, <sup>3</sup>CNS, <sup>4</sup>TITEC, <sup>5</sup>University of Peking, <sup>6</sup>TU Darmstadt, <sup>7</sup>GSI

Morphometric studies of the "Island of Inversion"

#### **Summary**

The "Island of Inversion"

In-Beam  $\gamma$  Setup

RIBF32

**Fluorine Isotopes** 

Summary

Collaboration

- NP0702-RIBF32 received only about 10 % (3.5 days × 70–110 pnA) of anticipated <sup>48</sup>Ca total beam dose (10 days × 200 pnA)
- N = 20 magic number is gone everywhere we looked
- $E(2_1^+)$  of <sup>32</sup>Ne at 722(9) keV
- $E(2_1^+)$  of <sup>38</sup>Mg at 655(6) keV
- $E(4_1^+)/E(2_1^+) \approx 3$  for <sup>34-38</sup>Mg
- Neutron-rich Mg isotopes form even-even particle-bound isthmus between N = 20 and N = 28 shell closure erosions
- <sup>29</sup>F belongs to "Island of Inversion"
- First indication for shell breaking of a "classical" doubly-magic nucleus
- Many other results not shown today, e.g. 1n, 2n, 1p knockout

# THE END

Morphometric studies of the "Island of Inversion"

RIBF Seminar, July 10<sup>th</sup>, 2012 - 39

The "Island of Inversion"

In-Beam  $\gamma$  Setup

RIBF32

Fluorine Isotopes

Summary

# **Backup slides from now**

Morphometric studies of the "Island of Inversion"

# Spectroscopic Factors <sup>28</sup>O + 1p and <sup>30</sup>Ne - 1p

The "Island of Inversion"

In-Beam  $\gamma$  Setup

RIBF32

Fluorine Isotopes

Summary

| <sup>29</sup> F | <sup>28</sup> O  | $d_{5/2}$ | $s_{1/2}$ | $d_{3/2}$ |
|-----------------|------------------|-----------|-----------|-----------|
| $1/2^+_1$       | $0^+_1$          |           | 0.339     |           |
| $1/2_{1}^{+}$   | $2^{\bar{+}}_1$  | 0.452     |           | 0.047     |
| $5/2^+_1$       | $0^+_1$          | 0.689     |           |           |
| $5/2^{+}_{1}$   | $2^{-}_{1}$      | 0.129     | 0.049     | 0.007     |
| <sup>29</sup> F | <sup>30</sup> Ne | $d_{5/2}$ | $s_{1/2}$ | $d_{3/2}$ |
| $1/2^+_1$       | $0_{1}^{+}$      | —         | 0.257     | _         |
| $5/2_1^{+}$     | $0_1^{+}$        | 1.485     |           |           |

Inclusive cross-section for 1p-knockout: 6.1(4) mbarn, 8(3) % to excited state