RIKEN Nishina Center Colloquim 19 October 2010

Akira Ukawa University of Tsukuba

Lattice QCD at the

Turning Point

Progress over the years has been removing these restrictions, and it is now becoming a real first principle method allowing calculations of physical quantities directly at the physical point.

Review recent progress and try to share this view with you

- Algorithmic progress and physical point simulation
- Going beyond particle physics a trial with Helium nuclei -
- Status of the Japanese 京"Kei" Supercomputer
 Project
- Conclusions

Algorithmic progress and Physical point simulation

6	Obstacles in lattice QCD calculations
	Using quark action with chiral symmetry Domain-wall/overlap formalism have resolved the issue
	 Including quark vacuum polarization effects Quenching(ignore these effects) is a thing of the past, Nf=2+1 calculations (include up, down, strange quark effects) now standard
	 Using small enough lattice spacing Improved lattice actions for minimizing lattice spacing errors have been developed and are employed
	 Using large enough lattice volume No real remedy other than to use large enough volume
	Using light enough quark masses Relied on chiral perturbation theory to extrapolate from heavy quark masses, a large source of ambiguity in lattice calculations

But, of course(?), machine power by itself was not enough

□ Anticipated effect of *chiral logarithm* at zero quark mass

$$\frac{m_{\pi}^2}{m_{ud}} \propto 1 + \frac{2Bm_{ud}}{\left(4\pi f\right)^2} \log \frac{2Bm_{ud}}{\mu^2} + \cdots$$

- □ However, extrapolation difficult to control since
 - Convergence radius a priori not known
 - Have to determine a number of unknown constants

14

Those technical points aside, I believe that it would be beautiful if one can sit right at the physical point and calculate the physical observables, because *then we are no longer simulating; we will be calculating the strong interactions as they are taking place in Nature itself.*

Revolutionary progress since 2005 ; beating the critical slowing down

Key observation

M. Luescher、C

- Separate UV and IR modes of quark fluctuations
- gluon: UV: IR forces are order of magnitude different!

$$F_{gluon} >> F_{quark,UV} >> F_{quark,IV}$$

This invites a multi-time step integration:

i.e., one can enlarge the time step for the most compute intensive IR quark force, *leading to a large reduction in the computing requirement.*

Our conscious effort toward physical pion mass (I)

- Development of PACS-CS computer with a view of running the improved HMC algorithm (2005 2007)
 - 2560 nodes with Intel Xeon (5.6Gflops) CPU (14.3Tflops)
 - 16x16x10 3d hypercrossbar network(0.75GB/sec/node)
 - 3-year project with US\$24M budget
 - Built by Hitachi Ltd.
- Development of domain-decomposed hybrid Monte Carlo code for Wilson-clover action
- Operation
 - Started running June 2006
 - Full production since late 2006

In the mean time, came along the BMW Collaboration

BMW Collaboration (Butapest-Marseille-Wuppertal) Science 322(2008) 1224

 m_{π} >200MeV but large lattices (m_{π} L>4) and continuum extrapolated!

Status this year: lattice size vs pion mass

Review of simulations

Error assessment

Summary

23

FV Landscape

From C. Hoelbling's review at Lattice 2010

6	Upshot of algorithmic progress	
	 Realistic calculation directly at the physical point finally reality Fruit of continuous effort over 25 years toward: Better physics understanding, Better algorithms, and More powerful machines 	
	 Change of philosophy from "simulation" to "calculation" No more approximations/extrapolations (other than the continuum extrapolation) In particular, no more reliance (other than checks) on ChPT Gluon configuration produced is strong interaction in Nature itself 	
		24

- Expect fundamental issues of lattice QCD as particle theory make major progress over the next five year range
 - Single hadron properties and fundamental constants
 - Precision flavor physics (<1%) and resolution of old issues including $K \rightarrow \pi \pi$ decays
 - Hot/dense QCD with chiral lattice action on large lattices and physical pion mass
- Vast area of multi-hadron systems/atomic nuclei lies in wait to be explored
 - Nuclear force from lattice QCD
 - Exotic nuclei with unusual n/p ratios/strangeness etc

Several (diverse) subjects of personal interest

Solution Can you sit exactly at the physical point?
 NO, but this can be resolved by the reweighting technique. Reweighting technique An old idea by A. Ferrenberg, R. Swendsen, PRL 61, 2635 (1988), used in many phase transition studies Recently applied to <i>shift quark mass by a small amount</i>
See e.g., A. Hasenfratz etal PRD78, 014515 (2008)
$\int \prod_{\ell} dU_{\ell} \det \left[D(U) + m'_{q} \right] e^{-S_{gluon}(U)} = \int \prod_{\ell} dU_{\ell} \frac{\det \left[D(U) + m'_{q} \right]}{\det \left[D(U) + m_{q} \right]} \det \left[D(U) + m_{q} \right] e^{-S_{gluon}(U)}$
$\langle O \rangle_{m'_q} = \langle O \cdot R \rangle_{m_q}$ $R = \frac{\det \left[D(U) + m_q \right]}{\det \left[D(U) + m'_q \right]} = \det \left[1 + \left(m_q - m'_q \right) \left(D(U) + m'_q \right) \right]$
 Have to calculate only the determinant ratio instead of a full simulation

An exemplary calculation

PACS-CS Collaboration, PRD81, 074503 (2010)

Original calculation

- Nf=2+1 with Wilson-clover action
- 32^3x64 lattice, 1/a=2GeV
- hopping parameter $\kappa_{ud} = 0.13778500, \kappa_s = 0.13660000$
- Misses the physical point by a fair amount, e.g.,

$$m_{\pi} = 151 \pm 6MeV$$
 cf $\exp = 135MeV$

$$m_K = 505 \pm 8MeV$$
 cf $\exp = 495MeV$

Target calculation

Hopping parameter $\kappa_{ud} = 0.13779625$, $\kappa_s = 0.13663375$ estimated from the original calculation

Isospin breaking

– further application of reweighting –

□ Isospin breaking in some channels is determined very precisely, e.g., $m_{\pi^{\pm}} - m_{\pi^{0}} = 4.5936 \pm 0.0005 MeV$

 $m_{neutron} - m_{proton} = 1.2933321 \pm 0.0000004 MeV$ \Box Very interesting probe to examine

- up/down quark mass difference, $m_{up} \neq m_{down}$ including the possibility of $m_{up} \approx 0$
- requires disentangling QED effects $Q_{up} = \frac{2}{2}e$,

$$Q_{down} = -\frac{1}{3}e$$

- Apply reweighting to
 - Split up and down quark mass
 - Introduce EM coupling

Isospin breaking – first attempt –

- T. Izubuchi et al talk on Friday for details
- Nf=2+1 configuration with domain-wall quark as base configuration
 - 16^3x48, 24^3x48 lattice
- □ In the initial study, only valence quarks carry
 - up/down quark mass difference
 - EM coupling to non-compact EM field

$$m_{up} \neq m_{down}$$
$$Q_{up} = \frac{2}{3}e, \quad Q_{down} = -\frac{1}{3}e$$

Partially quenched ChPT for QCD & QED to determine the low energy constants

Physical predictions, e.g.,

 $m_{up} = 2.37 \pm 0.10 \pm 0.24 MeV$ $m_{down} = 4.52 \pm 0.15 \pm 0.26 MeV$

Further work in progress to include sea quark effects

Strong coupling constant

Experimental average

$$\alpha_s^{MS}(M_Z) = 0.1186 \pm 0.0011$$

S. Bethke, ArXiv.0908.1135

Nf=2+1 Lattice QCD HPQCD 2009 update (private communication from C. Davies) $\alpha_s^{MS}(M_Z) = 0.1184 \pm 0.0004$ PACS-CS 2009 Y. Taniguchi et al JHEP 0910, 053 (2009) $\alpha_s^{MS}(M_Z) = 0.1205^{+0.009}_{-0.0027}$

B_{K} over the years

Quenched calculation with domain-wall quark action: RBC Collaboration, T. Blum et al, PRD68, 114506 (2003) CP-PACS Collaboration, J. Noaki et al, PRD68, 014501 (2003)

- Failure of the previous lattice calculation (2003) indicates
 - Inadequacies of Quenched approximation

 Failure of SU(3) chiral perturbation theory

Steady progress since then

Going beyond particle physics – a trial with Helium nuclei –

6	What should be the focus?
	Over half a century of nuclear physics has been based on effective theory of nucleons and mesons adapted to natural nuclei 1934 Pion as origin of nuclear force H. Yukawa 1949 shell model of nuclei Jansen-Meyer
	 Limitations of this approach manifest themselves in a number of ways; Purely phenomenological nuclear potentials describe, but do not explain, data, e.g., hard core Uncertain reliability to discuss unnatural nuclei with large/small neutron/proton ratio Impossible to explore what will happen if QCD parameters are different from what they are

Direct calculation of nuclear properties from quarks and gluons

T. Yamazaki, Y. Kuramashi, A. ukawa, PRD81, 111504 (2010)

6	A trial with Helium nuclei
	First "real" nuclei and a large binding energy
	(easiest of the lot?)
	First and foremost issue to address:
	"Is the system of 2 protons and 2 neutrons a bound state?"
	Use standard lattice methods • Extraction of energy difference from helium correlation function $\frac{\langle He(t) \cdot He(0) \rangle}{\langle p(t) \cdot \overline{p}(0) \rangle^2 \langle n(t) \cdot \overline{n}(0) \rangle^2} \xrightarrow{t \to \infty} \exp\left(-\left(m_{He} - 2m_p - 2m_n\right)t\right)$
	 Finite volume studies to distinguish if bound state or scattering state 44

- Reduction using
 - symmetries
 - neutron ⇔proton, neutron ⇔ neutron in He operator
 - Ispspin: all proton ⇔ all neutron
 - Calculate two contractions simultaneously
 - up ⇔ up in proton or down ⇔ down in neuron
 - Further reduction using blocks of three quark propagators

<u></u>	Simulations a	and results						
	Quenched calculat	ion with heavy pion mass						
	$a = 0.13 fm m_{\pi} = 0$	$0.8 GeV m_N = 1.6 GeV$						
Three volumes to examine size dependence								
	$L L(fm) N_{conf} L$	N _{meas} / conf						
	24 3.1 2,500	2						
	48 6.1 400	12						
	96 12.3 200	12						
	Two expontially sr	neared sources						
	$q(\vec{x}) = A \cdot \exp(-Br)$	$\begin{array}{c cccc} S_1 & S_2 & L \\ \hline (A,B) & (0.5,0.5) & (0.5,0.1) & 24 \end{array}$						
		(A,B) $(0.5,0.5)$ $(1.0,0.4)$ 48,96						

Status of the Japanese 京"Kei" Supercomputer Project

1京=10 Peta in the Japanese counting system

Since Straim Strain Strain

□ Goals:

- Development of 10 Pflops-class system 1.
- Development of grand challenge applications in nano 2. science and life science
- 3. Buildup of a research center in computational science
- Project period
 - Japanese FY 2006 to 2012
- Project budget
 - 115.4 B¥ (about 1B Euro)
- Institution responsible for the computer R&D
 - RIKEN

Original schedule of the Project Big jolt in November 2009									
		JFY2006	JFY2007	JFY2008	JFY20	9 、	JFY2010	JFY2011	JFY2012
System R&D		Con	ceptual Detail	ed design	Protot	/ping/	evaluation	n/production	Tuning
ind enge ations	Nano applications	R&D and evaluation						verification	
Gra Chall Applic	Life applications		R&D and evaluation					verific	cation
bu	Computer building		Design	Design Construction					
Buildi	Research building			esign	Construc	ion			

Political turmoil in Japan since last summer

- 31 August 2009
 - Landslide victory by People's Democratic Party (first real change of power since 1951)
- 18 September:
 - "Government Revitalization Unit (GRU)" is set up; starts reexamination of FY2010 budget
- 13 November:
 - GRU Working Group, after an 1-hour public hearing, recommends *freezing of the Supercomputer Project*; many science & technology budget also recommended cut.
- Late November-early December:
 - appeals by many academic communities against the GRU's reccomendation
- 16 December:
 - Government decides to proceed with the Project

6	Bitter lessons from the incident	
	 Revolutionary change of the Japanese political landscape With the old Democratic Party, science and technology was an uncontested budget area This is no more with the People's Democratic Party; it puts priority on policies closer to people, e.g, healthcare, subsidies to child care etc 	
	 Hard times lie ahead for basic science New science and technology policy is geared heavily towards environment ("green") and life related policies Severe financial situation makes big projects a liability in policy making 	
	Strong support from "people" is becoming overridingly important and essential.	5(

京"Kei" computer System Configuration

п

CPU Features (Fujitsu SPARC64[™] VIIIfx)

8 cores

16GF/core(2*4*2G)

- 2 SIMD operation circuit
 - 2 Multiply&Add floating-point operations (SP or DP) are executed in one SIMD instruction
- 256 FP registers (double precision)
- □ Shared 5MB L2 Cache (10way)
 - Hardware barrier
 - Prefetch instruction
 - Software controllable cache
 - Sectored cache
- Performance
 - 16GFLOPS/core, 128GFLOPS/CPU

45nm CMOS process, 2GHz 22.7mm x 22.6mm 760 M transisters 58W(at 30°C by water cooling)

Reference: SPARC64[™] VIIIfx Extensions

http://img.jp.fujitsu.com/downloads/jp/jhpc/sparc64viiifx-extensions.pdf

Programming features

- Hybrid programming model with multi-threads and MPI
- □ Fortran 2003, XPFortran , C, C++
- Optimized compiler (SIMD/256 FP registers/sector cache)
- MPI based on MPI-2.1 specification
- Numerical libraries (BLAS, LAPACK, FFTW, SSL-II (Fujitsu Library)
- Debugger and Profiler

System environment

OS: Linux-based OS on compute nodes

- File system: 2-level (local/global) system
 - Permanent user files on the global system
 - directly accessible via NSF-like system from frontend server
 - Staged in/out to local system for job execution

Cite for the 京"Kei" Supercomputer

Photo of building (completed May 2010)

Schedule of the project We are here.

		FY2006	FY2007	FY2008	FY2009	FY2010	FY2011	FY2012
System		Concep desig	Conceptual / Detailed design			Product and a	on, installation, adjustment	Tuning and improvement
Applications	Next-Generation Integrated Nanoscience Simulation		Development	, production, ar		Verification	Open to the project	
	Next-Generation Integrated Life Simulation		Developm	1	Verif	ication		
Buildings	Computer building	Design Cor			truction			
	Research building		Desiç	gn Co	onstruction			

Related developments

- New Institute for Computational Science in Kobe
- Strategic Field Program for 京"Kei" computer
 - Strategic Usage of 京"Kei" -

New Institute in Kobe

"Advanced Institute for Computational Science"

Size and emphasis

- About 100 researchers
 - 2/3 in various areas of computational science
 - 1/3 in computer science
 - basic science (particle physics) will be one of the core groups
- Strong collaboration between computational and computer science
- Location
 - Kobe on site of the 京"Kei" computer
- Schedule
 - Official foundation date : June 2010
 - Research groups to start in October 2010

"Strategic Field Program" for 京"Kei"

In order to put 京"Kei" computer to strategic use,

- Government selected 5 strategic fields in science and technology
- For each field, Government selected a core institute.
- Each core institute is responsible for organizing research and supercomputer resources in the respective field and its community, for which they receive
 - priority allocation of 京"Kei" resources
 - funding to achieve the research goals
- □ Project period : JPF2011~2015

Conclusions

Lattice QCD perspective

- Realistic calculation directly at the physical point is finally reality; change of philosophy from "simulation" to "calculation"
- There are still a number of difficulties, but we expect fundamental issues of lattice QCD as particle theory make major progress over the next five year range
- And the vast area of multi-hadron systems/atomic nuclei lies in wait for exploration

