低速中性子を用いた原子核・素粒子物理

清水裕彦

名古屋大学

理学研究科 素粒子宇宙物理学専攻 素粒子物性研究室(Φ研)

hirohiko.shimizu@nagoya-u.jp

 Date(2013/05/14) by(H.M.Shimizu)

 Title(低速中性子を用いた原子核・素粒子物理学)

 Conf(第70回仁科加速器センター原子核グループ月例コロキウム) At(Wako)

- **1. Introduction**
- 2. Lifetime
- 3. T-violation (CP-violation)

EDM, n-A

- 4. Gravity
- 5. その他(B,B-L violation)

1. Introduction

 Date(2013/05/14) by(H.M.Shimizu)

 Title(低速中性子を用いた原子核・素粒子物理学)

 Conf(第70回仁科加速器センター原子核グループ月例コロキウム) At(Wako)

物質と反物質の間に対称性が成り立つのなら、この宇宙には、物質だけが観測されて、反 物質がほとんど観測されないのは何故か?

Why do we observe matter and almost no antimatter if we believe there is a symmetry between the two in the universe?

暗黒物質の正体は何か?(暗黒エネルギーの正体は何か?)

What is this "dark matter" that we can't see that has visible gravitational effects in the cosmos?

素粒子標準模型が素粒子の質量を導けないのは何故か?

Why can't the Standard Model predict a particle's mass?

クォークやレプトンは"素"粒子なのか?(より基本的な粒子が存在するのか?)

Are quarks and leptons actually fundamental, or made up of even more fundamental particles?

クォークとレプトンの世代数が3である理由は何か?

Why are there exactly three generations of quarks and leptons?

重力相互作用は如何に説明されるのか?

How does gravity fit into all of this?

http://particleadventure.org/index.html

電荷を持たない 量子放射補正項の精密測定 標準模型を超える新物理探索

低速中性子

Date(2013/05/14) by(H.M.Shimizu)Title(低速中性子を用いた原子核・素粒子物理学)Conf(第70回仁科加速器センター原子核グループ月例コロキウム) At(Wako)

page 7 Restree Optics and

Neutron

2. Lifetime

 Date(2013/05/14) by(H.M.Shimizu)

 Title(低速中性子を用いた原子核・素粒子物理学)

 Conf(第70回仁科加速器センター原子核グループ月例コロキウム) At(Wako)

Conf(第70回仁科加速器センター原子核グループ月例コロキウム) At(Wako)

page 10

Lifetime

Lifetime

Lifetime

Experiments for neutron lifetime

Method	Beam	Penning trap	Gravitational trap	Magnetic trap
Neutron source	reactor	reactor	reactor	reactor
Energy	Cold neutron	Cold neutron	UCN	UCN
Detection particle	Electron	Proton	Neutron	Neutron
Challenge	high background	flux monitor	wall effect	depolarization
Result	878 ± 27 ± 14 (1989)	886.6 ± 1.2 ± 3.2 (2005)	878.5 ± 0.7 ± 0.3 (2008)	878 ± 1.9 (2009)

Neutron lifetime is measured by in-beam and storage methods. Our experiment is in-beam method.

We are using pulsed neutrons from separation neutron source.

We are trying for O(0.1%) with In-beam method.

$N_1/N_2 = 1/(\tau n \sigma_0 v_0)$

Spin Flip Chopper

高周波印加で中性子スピンの向きを制御することで 中性子ビームを高速に振分け

速度の揃った中性子ビームバンチを検出器に導く

中性子起因のバックグラウンドを抑制

J-PARC

Neutrino <

Materials and Life Science Facility

50 GeV

FFF

Linac

Hadron Exp. Facility

J-PARC Pulsed Neutron source

BL05, Polarization beam branch

Repetition rate	25Hz		
Moderator	Coupled (20 K)		
Beam size	10 cm x 4 cm		
Flux	8.6 x 10 ⁶ s-1 cm-2 (1MW)		
Polarization	96%		
Energy	$1 \sim 20 \text{ meV}$		
wavelength	$0.2\sim 1\mathrm{nm}$		
Velocity	$500 \sim 2000 \text{ m/s}$		

→ Experimental apparatus is installed at 20 m distance

Supermirror Benders in Assembly

Polarization Branch

Experiment Beta decay

MirrorMagnetic Supermirror(2.8Qc)ConfigurationPolygonal approximation12unit × 0.262 deg. (R=82m)Cross-section40mm × 100mmChannel4chBender Length4.5 m (375mm × 6 × 2)

3.14 deg.

Bending Angle

Unpolarized-beam Branch

Experiment Solution Mirrors Solution Configuration Curvature Cross-section Channel Bender Length Bending Angle

Scattering Supermirror (3Qc) Real Curve 100m 50mm × 40mm 5ch 4.0 m (2.0m × 2) 2.58 deg.

Low Divergence Branch

Experiment Mirrors Configuration Critical Angle Bending Angle

Supermirror (3Qc) 2 mirrors 0.95 deg. **3.85 deg.**

Interferometer

J-PARC/MLF BL05 (NOP: Neutron Optics and Physics)

<u>_</u>____

MEL TWY

stron Optics and Physics

Spin Flip Chopper

Time Projection Chamber

In flight *β*-decay

Neutron decays into electron, proton and neutrino.

β-decay is 3-body decay, so energy spectrum has a low energy tail.

99.9% of β-decay electrons have >4 keV energy.

Neutron flux

The difficulty of in-beam method is determination of the beam flux.

By adding a small amount of 3 He, we can measure the neutron flux via the 3 He(n,p) 3 H reaction.

4mPa of ³He gives same event rate with beta decay.

Both of the event rates are proportional to 1/v, so the velocity dependence is canceled by taking the ratio.

Spin Flip Chopper(SFC)

Resonance flippers flip the neutron spin.

Magnetic supermirror reflects only non-flipped neutrons.

Depolarization makes the contrast worse.

SFC performance

With 2 flipper and 3 mirror sets

Optimized to give good contrast

Beam size	3 cm x 2 cm	
Minimum bunch length	15 cm	
Rising length	5 cm	
Flux (flipper on)	1.2 x 10 ⁶ neutron/sec	
Flux (flipper off)	0.3 x 10 ⁴ neutron/sec	
Contrast	400	
Flux with 5 bunches	1.7 x 10 ⁵ neutron/sec	
Decay rate	0.1 decay/sec	
Fiducial Time	2.8 ms / beam cycle	

2350

Time Projection Chamber

	÷		
Anode wire	29 of W-Au wires(+1780V)		
Field wire	28 of Be-Cu (0V)		
Cathode wire	120 of Be-Cu (0V)		
Drift length	30 cm (-9000V)		
Gas mixture	He:CO ₂ =85kPa:15kPa		
TPC size(mm)	300,300,970		

Low background TPC (inside)

PEEK (Poly-Ether-Ether-Ketone) : used in gas detector for the first time

Feature : Chemically made from organic materials \rightarrow small impurity

Pros : easily machinable, weldable,

1m material can be made to accuracy of $100 \mu m$

Cons : Small elasticity, need pre-tention to set up wires

Backgrounds caused by prompt $\boldsymbol{\gamma}$ rays

from capture reactions of scattered neutrons by gas

⁶LiF board: sintered 95% enriched ⁶LiF and PTFE (LiF : PTFE=30wt% : 70wt%) All inner surface covered with ⁶LiF board

- Relative permittivity is ϵ =3.0
- Position of electrodes were optimized by simulation.
- Uniformity of the drift velocities was less than 1%

⁶Li + neutron $\rightarrow \alpha$ + ³H Absorption length is 500µm

Low background TPC (outside)

Lead shielding and Cosmic ray Veto

Event Selection

 Energy cut : Energy deposit over 1.4keV Fiducial cut : Hit on Beam region 				10^{-3} 10 1 10 Deposit Energy I
	Total count [cps]	With Energy cut [cps]	With Fiducial cut [cps]	
No shielding or veto	123.7	100.1	30.7	Environmental radiation : 0.8 cps Cosmic ray : 0.5 cps
+With Lead	58.4	44.2	13.9	Radioactives in TPC : 0.1 cps
+With Veto	7.7	4.3	1.4 S	/N increased to 0.9

Energy cut

Estimation of statistical error

The decay rate is 0.1cps for beam power of 220 kW. S/N of 0.9 achieved in present condition.

- J-PARC beam power
 will be 400 kW (about twice) at 2014.
- Spin flip chopper
 - The intensity is limited by mirror size.
 - Present beam size is 3 x 2 cm.
 - Large mirrors make the beam size to 10×4 cm.
 - Beam Intensity will be 16 times

Beam intensity will be 32 times at 2014. Statistical error is estimated to achieve 0.1 % in 150 days.

Number density of ³He atoms

TPC gas is prepared by mixing natural He and ³He(>99.9%) We determine

- 1) Absolute pressure of mixed He ~80 kPa
- 2) ³He/⁴He for abundance of 10⁻⁶ with accuracy of 10⁻³
- Pressure can be measured to 10⁻⁴ precision at 100 kPa with a piezo-drive transducer.
- Partical pressure of ³He dopant is controlled by a baratron gauge and volume expansion method.
 It provide ΔP(³He)/P ~ 0.2%.
- Temperature can be measured with $\Delta T \sim 0.1$ K.
- Natural He contents ³He of ~0.1 ppm. It will be determined by a mass spectroscopy. Present limit is 1%.

Present uncertainty of ³He density is ~0.2%

Cross section of ³He(n,p)³H

Transmission of ³He was measured.

Present σ_{np} is 5333 ± 7 barn (0.13%)

C. D. KEITH et al. PHYSICAL REVIEW C 69, 034005 (2004)

More precise measurement can be done at J-PARC (e.g. 100m beamline).

Uncertainties

$$\tau_n^{-1} = \frac{N_e / \varepsilon_e}{N_p / \varepsilon_p} \rho_{^{3}He} \sigma_{np} (v_0) v_0$$

- Statistical uncertainty: ~0.1% by measurement of 150 days.
- Determination of N_e and N_p: $\epsilon_{\beta} > 99.9\%$ (4keV), ϵ_{p} =100%

Background of

~1% of simultaneous background

~35% of time dependent background

~110% of time independent background

Should be subtracted correctly.

- Density of ³He atoms \rightarrow ~0.2%
- ³He(n,p)³H cross section \rightarrow 0.13%.

Timeline of this experiment

Correlation Terms at the Lowest Order

$\frac{d\Gamma}{dE_e d\Omega_e d\Omega_v} = \frac{(G_\mu V_{ud})^2}{(2\pi)^5} (1+3\lambda^2) p_e E_e E_v^2 \times \left[1+a\frac{\vec{p}_e \cdot \vec{p}_v}{E_e E_v} + \frac{\langle \vec{J} \rangle}{J} \cdot \left[A\frac{\vec{p}_e}{E_e} + B\frac{\vec{p}_v}{E_v}\right]\right]$

$$a = \frac{1 - \lambda^2}{1 + 3\lambda^2}$$
$$A = -2 \frac{\lambda(\lambda + 1)}{1 + 3\lambda^2}$$
$$B = 2 \frac{\lambda(\lambda - 1)}{1 + 3\lambda^2}$$

 Date(2013/05/14) by(H.M.Shimizu)

 Title(低速中性子を用いた原子核・素粒子物理学)

 Conf(第70回仁科加速器センター原子核グループ月例コロキウム) At(Wake)

Phys. Lett. B. 595, 250 (2004)

Correlation Terms at the Next-Lowest Order

$$\begin{split} \frac{d\Gamma}{dE_{c}d\Omega_{\tilde{p}c}d\Omega_{\tilde{p}c}} &= \frac{(G_{F}V_{ud})^{2}}{(2\pi)^{5}} \frac{F(Z,E_{c}) |\tilde{p}_{c}| E_{\nu}}{m_{n} [E_{p} + E_{\nu} + E_{c} (\vec{\beta} \cdot \hat{p}_{\nu})]} |M|^{2}. \end{split}$$

$$\begin{split} |M|^{2} &= m_{n}m_{p}E_{e}E_{\nu} \left(1 + \frac{\alpha}{2\pi} e_{V}^{R}\right) \left(1 + \frac{\alpha}{2\pi} \delta_{\alpha}^{(1)}\right) &\stackrel{(I=2)}{=} \frac{(I=2\pi)^{2}}{(2\pi)^{5}} \frac{(I=2)^{2}}{m_{n} [E_{p} + E_{\nu} + E_{c} (\vec{\beta} \cdot \hat{p}_{\nu})]} |M|^{2}. \end{aligned}$$

$$\begin{split} |M|^{2} &= m_{n}m_{p}E_{e}E_{\nu} \left(1 + \frac{\alpha}{2\pi} e_{V}^{R}\right) \left(1 + \frac{\alpha}{2\pi} \delta_{\alpha}^{(1)}\right) &\stackrel{(I=2)}{=} \frac{(I=2\pi)^{2}}{(2\pi)^{5}} \frac{(I=2)^{2}}{m_{\nu} (I=2)^{2}} \frac{(I=2)^{2}}{m_{\nu} (I=2)^{2}} \frac{(I=2\pi)^{2}}{m_{\nu} (I=2)^{2}} \frac{(I$$

Correlation Terms at the Next-Lowest Order

A Possible Sensitivity to SUSY

$$\Delta B = -2\frac{m}{E}\frac{\lambda}{1+3\lambda^2} \operatorname{Re}\left[2(2\lambda+1)\frac{g_T}{g_A}\left(\frac{a_{RL}^T}{a_{LL}^V}\right)^* - \frac{g_S}{g_V}\left(\frac{a_{RL}^S + a_{RR}^S}{a_{LL}^V}\right)^*\right]$$

β-energy dependence in neutrino asymmetry coefficient B

 $\Delta B \le 10^{-3}$ (maximal LR-mixing)

10⁻⁴-level accuracy may probe SUSY

Ramsey-Musolf&Su, PhysRep456(2008)1

 Date(2013/05/14) by(H.M.Shimizu)

 Title(低速中性子を用いた原子核・素粒子物理学)

 Conf(第70回仁科加速器センター原子核グループ月例コロキウム) At(Wako)

page 36
3. T-violation

d ≠ 0 ならば時間反転対称性が破れる

TeV新物理→EDM

	Current limit [e·cm]	Future goal	Neutron equivalent
Neutron	<1.6×10-26	~10-28	10 -28
¹⁹⁹ Hg atom	<2×10-28	~2×10 ⁻²⁹	10 -25 - 10-26
¹²⁹ Xe atom	<6×10-27	~10 ⁻³⁰ - 10 ⁻³³	10-26 - 10-29
Deuteron nucleus		~10-29	3×10 ⁻²⁹ - 5×10 ⁻³¹

3.1. Electric Dipole Moment

Measurement Procedure

search for the phase change when the electric field is reversed

中性子電気双極子能率の測定 $\frac{\omega_{\pm}}{2\pi} = 30 \frac{B}{1\mu T} \pm 50 \times 10^{-9} \frac{d_n}{10^{-26}} = \frac{E}{10^{-26}}$

Magnetometer

Rb NMOR magnetometer

in progress for the atomic EDM research at T.I.T. and RIKEN as a Grant-in-Aid Program.

Goal sensitivity = 100 aT (=0.1fT)

Hg Co-magnetometer

We start the study with a Hg lamp using the infrastructure of the ³He nuclear polarization R&D station at the KEK/IMSS.

Tが現象教育のAneter

Fig. 11. 入射レーザ強度(*I*) と許容強度 変動量(δν_{laser})の関係. 各直線はそれぞ れ目標とする¹⁹⁹Hg ラーマー周波数測 定精度(δν_{Hg})が異なる.

Frequency stability < 40 kHz

 \rightarrow Laser power 1mW / cm²

Fig. 13. 強度変動量 (δ_R) と周波数絶対 精度 (δv_{laser}) の関係。各直線はそれぞ れ目標とする ¹⁹⁹Hg ラーマー周波数測 定精度 (δv_{Hg}) が異なる。

Absolute accuracy < 1 MHz \rightarrow Power stability < 3%

Laser setup and Cell test is on-going...

単結晶を用いたEDM測定

Diffraction

cold neutron

E~10⁸-10⁹ V cm⁻¹

t ~10⁻² s

Et ~10⁶-10⁷ V s cm⁻¹

$$f(\boldsymbol{q}) = f_0 + f_{\text{Schw}}(\boldsymbol{q}) + f_{\text{EDM}}(\boldsymbol{q})$$

$$f_{0} = a$$

$$f_{Schw}(q) = i \frac{2e\mu_{n}}{\hbar c} (Z - F(q)) \frac{\boldsymbol{\sigma} \cdot (\boldsymbol{k} \times \boldsymbol{q})}{q^{2}}$$

$$f_{EDM}(q) = i \frac{2med_{n}}{\hbar^{2}} (Z - F(q)) \frac{\boldsymbol{\sigma} \cdot \boldsymbol{q}}{q^{2}}$$

$$F(\boldsymbol{q}) = \int \rho(\boldsymbol{q}) e^{i\boldsymbol{q}\cdot\boldsymbol{r}} d^3r$$

結晶の回折によるEDM探索

⇒ UCN以外での10⁻²⁶ ecmの検証、新物理探索

結晶の回折によるEDM探索

結晶アラインメント精度 0.02 deg 結晶温度制御 0.01 deg

3.2. T-violation in Compound Nuclei

nA反応におけるT-violation

51

page

Gudkov, Phys. Rep. 212 (1992) 77

$$\kappa(J = I + \frac{1}{2}) = \frac{3}{2\sqrt{2}} \left(\frac{2I+1}{2I+3}\right) \frac{\sqrt{2I+1}(2\sqrt{I}x - \sqrt{2I+3}y)}{(2I-3)\sqrt{2I+3}x - (2I+9)\sqrt{I}y}$$
$$\kappa(J = I - \frac{1}{2}) = -\frac{3}{2\sqrt{2}} \left(\frac{(2I+1)\sqrt{I}}{\sqrt{(I+1)(2I-1)}}\right) \frac{2\sqrt{I+1}x + \sqrt{2I-1}y}{(I+3)\sqrt{2I-1}x + (4I-3)\sqrt{I+1}y}$$

$$x^{2} = \frac{\Gamma_{p,1/2}^{n}}{\Gamma_{p}^{n}} \qquad y^{2} = \frac{\Gamma_{p,3/2}^{n}}{\Gamma_{p}^{n}}$$
$$x^{2} + y^{2} = 1$$
$$x = \cos \phi \qquad y = \sin \phi$$

Candidate Resonances for the T-violation Experiment

Date(2013/05/14) by(H.M.Shimizu)Title(低速中性子を用いた原子核・素粒子物理学)Conf(第70回仁科加速器センター原子核グループ月例コロキウム) At(Wako)

page

Y.-H.Song et al., Phys. Rev. C83 (2011) 065503

$$\begin{split} V_{\rm PT} &= \left[-\frac{\bar{g}_{\eta}^{(0)}g_{\eta}}{2m_{N}} \frac{m_{\eta}^{2}}{4\pi} Y_{1}(x_{\eta}) + \frac{\bar{g}_{\omega}^{(0)}g_{\omega}}{2m_{N}} \frac{m_{\omega}^{2}}{4\pi} Y_{1}(x_{\omega}) \right] \boldsymbol{\sigma}_{-} \cdot \hat{\boldsymbol{r}} \\ &+ \left[-\frac{\bar{g}_{\pi}^{(0)}g_{\pi}}{2m_{N}} \frac{m_{\pi}^{2}}{4\pi} Y_{1}(x_{\pi}) + \frac{\bar{g}_{\rho}^{(0)}g_{\rho}}{2m_{N}} \frac{m_{\rho}^{2}}{4\pi} Y_{1}(x_{\rho}) \right] \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \boldsymbol{\sigma}_{-} \cdot \hat{\boldsymbol{r}} \\ &+ \left[-\frac{\bar{g}_{\pi}^{(2)}g_{\pi}}{2m_{N}} \frac{m_{\pi}^{2}}{4\pi} Y_{1}(x_{\pi}) + \frac{\bar{g}_{\rho}^{(2)}g_{\rho}}{2m_{N}} \frac{m_{\rho}^{2}}{4\pi} Y_{1}(x_{\rho}) \right] T_{12}^{z} \boldsymbol{\sigma}_{-} \cdot \hat{\boldsymbol{r}} \\ &+ \left[-\frac{\bar{g}_{\pi}^{(1)}g_{\pi}}{2m_{N}} \frac{m_{\pi}^{2}}{4\pi} Y_{1}(x_{\pi}) + \frac{\bar{g}_{\eta}^{(1)}g_{\eta}}{2m_{N}} \frac{m_{\eta}^{2}}{4\pi} Y_{1}(x_{\eta}) + \frac{\bar{g}_{\rho}^{(1)}g_{\rho}}{2m_{N}} \frac{m_{\rho}^{2}}{4\pi} Y_{1}(x_{\rho}) + \frac{\bar{g}_{\omega}^{(1)}g_{\omega}}{2m_{N}} \frac{m_{\omega}^{2}}{4\pi} Y_{1}(x_{\omega}) \right] \boldsymbol{\tau}_{+} \boldsymbol{\sigma}_{-} \cdot \hat{\boldsymbol{r}} \\ &+ \left[-\frac{\bar{g}_{\pi}^{(1)}g_{\pi}}{2m_{N}} \frac{m_{\pi}^{2}}{4\pi} Y_{1}(x_{\pi}) - \frac{\bar{g}_{\eta}^{(1)}g_{\eta}}{2m_{N}} \frac{m_{\eta}^{2}}{4\pi} Y_{1}(x_{\eta}) - \frac{\bar{g}_{\rho}^{(1)}g_{\rho}}{2m_{N}} \frac{m_{\rho}^{2}}{4\pi} Y_{1}(x_{\rho}) + \frac{\bar{g}_{\omega}^{(1)}g_{\omega}}{2m_{N}} \frac{m_{\omega}^{2}}{4\pi} Y_{1}(x_{\omega}) \right] \boldsymbol{\tau}_{+} \boldsymbol{\sigma}_{+} \cdot \hat{\boldsymbol{r}} \end{split}$$

$$egin{aligned} m{\sigma}_{\pm} &= m{\sigma}_1 \pm m{\sigma}_2 & m{r} = m{r}_1 - m{r}_2 & x_a = m_a r \ T_{12}^z &= 3 au_1^z au_2^z - m{\tau}_1 \cdot m{\tau}_2 & Y_1(x) = \left(1 + rac{1}{x}\right) rac{e^{-x}}{x} \ g_\pi &= 13.07, \quad g_\eta = 2.24, \quad g_
ho = 2.75, \quad g_\omega = 8.25 \end{aligned}$$

$$d_n = \frac{e}{m_N} \frac{g_\pi (\bar{g}_\pi^{(0)} - \bar{g}_\pi^{(2)})}{4\pi^2} \ln \frac{m_N}{m_\pi} \simeq 0.14 (\bar{g}_\pi^{(0)} - \bar{g}_\pi^{(2)})$$
$$|d_n| < 2.9 \times 10^{-26} \,\mathrm{e\,cm} \to \bar{g}_\pi^{(0)} < 2.5 \times 10^{-10}$$
$$|d(^{199}\mathrm{Hg})| < 2.1 \times 10^{-28} \,\mathrm{e\,cm} \to \bar{g}_\pi^{(1)} < 0.5 \times 10^{-11}$$

$$\frac{\Delta\sigma_{\rm PT}}{2\sigma_{\rm tot}} = \frac{-0.185b}{2\sigma_{\rm tot}} \left[\bar{g}_{\pi}^{(0)} + 0.26 \bar{g}_{\pi}^{(1)} - 0.0012 \bar{g}_{\eta}^{(0)} + 0.0034 \bar{g}_{\eta}^{(1)} \right. \\ \left. -0.0071 \bar{g}_{\rho}^{(0)} + 0.0035 \bar{g}_{\rho}^{(1)} + 0.0019 \bar{g}_{\omega}^{(0)} - 0.00063 \bar{g}_{\omega}^{(1)} \right] \\ \left. \frac{10^6}{0.5 \times 10^{-10} [b]} \stackrel{10^2}{\Rightarrow} 0.5 \times 10^{-4} [b] \stackrel{10^2}{\Rightarrow} 0.5 \times 10^{-2} [b]$$

ļ

55 Neutron Optics and Physic

page

3. Gravity

-Medium Range Force Search-

Gravity

PROPERTIES OF THE INTERACTIONS

Property Interaction	Sravitational	Weak	Electromagnetic	Strong	
WNy IS U	le gravi	ty 50 w	eak :	Fundamental	Residual
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note
	s not re			Quarks, Gluons	Hadrons
Particles mediating:	Graviton	W ⁺ W ⁻ Z ⁰		Gluons	Mesons
Strengt	s the na		space i	mę.	Not applicable
for two u quarks at: 3×10 ⁻¹⁷ m	10 ⁻⁴¹	10 ⁻⁴	1	60	to quarks
for tw Gravity is ess	ential®at th	e Planck s	cale. 1	Not applicable to hadrons	20

"hierarchy problem": Mgut~10²⁴eV ⇔ Msu(2)×U(1)~10¹¹eV

Phenomena out of the standard model is existing.

Neutrino Oscillation, Dark Energy, Dark Matter

Super-K, SNO, KamLAND WMAP

3-dim. Gravity $F_3(r) = G_3 \frac{m_1 m_2}{r^2}$

$$F_N(r) = G_N \frac{m_1 m_2}{r^{N-1}}$$

continuity at r=R*

$$\frac{G_3}{R^{*2}} = \frac{G_N}{R^{*N-1}} \implies G_3 = \frac{G_N}{R^{*N-3}}$$

If R* is longer than the Planck's length, G₃ becomes smaller.

Parametrization: V(r)=-(GM/r)(1+ $\alpha e^{-r/\lambda}$)

KK-graviton, which is emitted off our brane with the momentum $(q_1, q_2, ..., q_n)$ along the extradimension, looks having the mass |q|.

momentum is quantized in the unit of $2\pi/L$ in the extra-dimension $\frac{V(r)}{m_1m_2} = G_3 \sum_{(k_1, \dots, k_n)} \frac{e^{-(2\pi|k|/L)r}}{r} \underset{r < < L}{\longrightarrow} G_3 \frac{1}{r} \left(\frac{L}{2\pi r}\right)^n \int d^n u e^{-|u|}$

Possible Sensitivity of Multilayer Neutron Interferometer

ボーズ凝縮体の超高分解能光会合分光によるナノスケールでの重力補正項の探索

Approach : Photo-association

[M. Kitagawa, et al., PRA 77, 012719(2008)]

理工連携による静電加速器の更新と量子線研究の展開について

理学研究科・工学研究科

名古屋大学加速器駆動型中性子源(2015)

素粒子物理学

精密測定を通じた標準理論を超える新物理研究の基盤

工学的研究

産業製品の非破壊検査

実用材料の評価

鉄鋼材料のミクロおよびメゾスケールでの評価と高性能化

学生が先端研究に直接触れる機会を提供

page 68

Gravity

Dabbs et al., Phys. Rev. 139 (1965) B756

Gregoriev et al., Proc. 1st Int. Conf. Neutr. Phys., Kiev, 1 (1988) 60 g = 9.801 ± 0.013 m s⁻² g_{loc} = 9.814 m s⁻²

McReynolds, Bull. Am. Phys. Soc. 12 (1967) 105

$|\Delta g| < 5 \times 10^{-13} g_0$ $g = g_0 + \Delta g (\sigma \cdot g)$

Date(2013/05/14) by(H.M.Shimizu)Title(低速中性子を用いた原子核・素粒子物理学)Conf(第70回仁科加速器センター原子核グループ月例コロキウム) At(Wako)

Gravity

74

page

 Date(2013/05/14) by(H.M.Shimizu)

 Title(低速中性子を用いた原子核・素粒子物理学)

 Conf(第70回仁科加速器センター原子核グループ月例コロキウム) At(Wako)

Greene et al., Phys. Rev. Lett. 56 (1986) 819

n+p⇒d+γ (crystal diffraction) mn=1.008664919(13)amu mnc² = 939.56564(28) MeV **Spin** 1/2 direct observation of Stern-Gerlach effect C.G.Shull, (1969) Int. Neutron Physics School, Slushta, 1969, p.325, JINR 3-4981, Dubna, 1970

$\beta - decay \qquad \frac{d\Gamma}{dE_e d\Omega_e d\Omega_v} = \frac{(G_F V_{ud})^2}{(2\pi)^5} (1+3\lambda^2) p_e E_e E_v^2$			
T _p ≤750eV		$\times \left[1 + a \frac{\vec{p}_e \cdot \vec{p}_v}{E_e E_v} + b \frac{m_e}{E_e} + \frac{\langle \vec{J} \rangle}{J} \cdot \left[A\right]\right]$	$\frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_v}{E_v} + D \frac{\vec{p}_e \times \vec{p}_v}{E_e E_v} \bigg]$
$p < \vec{J} > \vec{p}_p$	$V_{ud}^{2} = \frac{K/\ln 2}{G_{F}^{2}(1+\Delta_{R}^{V})(1+\lambda^{2})f(1+\delta_{R})\tau_{n}}$		
	p_{e} $\lambda =$	$\frac{G_{\rm A}'}{G_{\rm V}'} = G_{\rm V}^{2} = G_{\rm V}^{2} (1 + \Delta_{\rm R}^{\rm A}) f$	0027 $f(1+\delta_R) = 1.71489 \pm 0.00002$
V e			(PDG2008)
	$ au_n$	mean lifetime	τ n=885.7±0.8 s
$\lambda = \lambda l e^{-i\phi}$	$a = \frac{1 - \lambda^2}{1 + 3/\lambda^2}$	electron-neutrino correlation	a=-0.103±0.004
lλl=1.2695±0.0029	$A = -2\frac{\lambda/\cos\phi + \lambda^2}{1 + 3/\lambda^2}$	electron asymmetry	A=-0.1173±0.0013
φ=(180.06±0.07)°	$B = -2 \frac{\lambda \cos \phi - \lambda^2}{1 + 3\lambda^2}$	neutrino asymmetry	B=0.9807±0.0030
	$D = 2 \frac{\lambda \sin \phi}{1 + 3/\lambda^2}$	T-odd	D=(-4±6)×10 ⁻⁴

 Date(2013/05/14) by(H.M.Shimizu)

 Title(低速中性子を用いた原子核・素粒子物理学)

 Conf(第70回仁科加速器センター原子核グループ月例コロキウム) At(Wake)

Magnetic Moment

$\mu_n = -1.9130427 \pm 0.000005 \ \mu_N$

Schwinger scattering

相互作用ハミルトニアン

原子核の電場を横切る際に受ける散乱

ローレンツ変換により中性子には磁場が見えている

$$H' = -\mu \cdot B = \frac{\mu}{mc} \sigma \cdot (E(r) \times p)$$
$$E(r) = -\nabla \left(\frac{Ze}{r} - \int d^3r' \frac{e\rho(r')}{|r - r'|} \right)$$

Born近似

核電場 電子による遮蔽

k

 $k = p/\hbar$

$$f_{\rm Schw} = -\frac{m}{2\pi\hbar^2} \int d^3r \ e^{-ik'\cdot r} H' e^{ik'\cdot r} = -\frac{\mu_n}{2\pi\hbar^2 c} \sigma \cdot \int d^3r \ e^{-ik'\cdot r} E(r) \times \left(\frac{\hbar}{i}\nabla\right) e^{ik'\cdot r}$$

$$f_{\text{Schw}}(\boldsymbol{q}) = i \frac{2e\mu_n}{\hbar c} (Z - F(q)) \frac{\boldsymbol{\sigma} \cdot (\boldsymbol{k} \times \boldsymbol{q})}{q^2}$$

$$F(\boldsymbol{q}) = \int \rho(\boldsymbol{q}) e^{i\boldsymbol{q}\cdot\boldsymbol{r}} d^3r$$

形状因子

 Date(2013/05/14) by(H.M.Shimizu)

 Title(低速中性子を用いた原子核・素粒子物理学)

 Conf(第70回仁科加速器センター原子核グループ月例コロキウム) At(Wako)

k

Electric Dipole Moment

$\hbar \omega = -2\vec{\mu}_n \cdot \vec{B} - 2\vec{d}_n \cdot \vec{E}$ **P-odd T-odd**

T-odd observable in a static system → T-violation

CP-violation

|d_n| < 2.9×10⁻²⁶ e cm (90%CL)

Baker et al., PRL97 (2006)131801

Date(2013/05/14) by(H.M.Shimizu)Title(低速中性子を用いた原子核・素粒子物理学)Conf(第70回仁科加速器センター原子核グループ月例コロキウム) At(Wako)

Electric Charge $q_n = (-0.4 \pm 1.1) \times 10^{-21} e$

Baumann et al., PRD37(1988)3107

|q_n| < 2×10⁻¹⁸ e

Littleton and Bondi, Proc. R. Soc., A252(1959)313, A257(1960)442

Date(2013/05/14) by(H.M.Shimizu) Title(低速中性子を用いた原子核・素粒子物理学) Conf(第70回仁科加速器センター原子核グループ月例コロキウム) At(Wake)

Conservation Laws and Equality of Charges

Feinberg, Goldhaber, Proc. Nat. Acad. Sci. USA 45(1959)1301

Q=Qn

 $\Sigma^0 (\Sigma^0 \rightarrow \lambda^0 + \gamma)$

 $\theta^0 \ (\theta^0 \rightarrow \lambda^0 + \pi^0)$

 $Q_{\gamma}=0$ because of p+p \rightarrow p+p+ γ Q=0Q=Qp n $\gamma \left(p + p \rightarrow p + p + \gamma \right) \qquad p$ $\lambda^0 \ (\lambda^0 \rightarrow n + \pi^0)$ $\pi^{0} (p + p \rightarrow p + p + \pi^{0}) \qquad \Sigma^{+} (\Sigma^{+} \rightarrow p + \pi^{0})$

$$K_1^0 (K_1^0 \rightarrow 2\pi^0)$$
$$K_2^0 (K_2^0 \rightarrow \pi^+ + \pi^- + \pi^0)$$

Date(2013/05/14) by(H.M.Shimizu) 1 世子を用いた原子核 • 表粒子物理学 寛70回仁科加速器センター原子核グループ月例コロキウム) At(Wako)

Electromagnetic Structure

Mean-square Charge Radius $< r_n^2 > = -0.1161 \pm 0.0022 \ fm^2$

Electric Polarizability

 $\alpha = (11.6 \pm 1.5) \times 10^{-4} \text{ fm}^3$

Magnetic Polarizability

β=(3.7±2.0)×10⁻⁴ fm³

Neutron Electron Interaction

ane=(-1.49±0.05)×10⁻³ fm

$$\sigma(\theta) = \left| a + Zf\left(\frac{\sin\theta}{\lambda}\right) a_{ne} \right|^2$$

Nucleon Scattering Lengths

neutron-proton scattering length

α_{np} =-23.516(13) fm

proton-proton scattering length

α_{pp} =-17.25(16) fm

neutron-neutron scattering length

 $\alpha_{nn}=(-18.5\pm0.4) \text{ fm} \quad d(\pi^{-},\gamma)2n$

 Date(2013/05/14) by(H.M.Shimizu)

 Title(低速中性子を用いた原子核・素粒子物理学)

 Conf(第70回仁科加速器センター原子核グループ月例コロキウム) At(Wako)

Antineutron

annihilation $n\bar{n} \longrightarrow \pi(95\%), K(5\%)$ (4.8±0.2) π (200-250MeV)

total cross-section for all inelastic processes (Epbar=450MeV)

pp 105mb np 115mb

cross-section for annihilation process

pp 85mb np 75mb

nuclear enhancement

reaction

annihilation

- Cu 1260±90 mb 1040±60 mb
- Pb 3000±250 mb 2010±180 mb

 Date(2013/05/14) by(H.M.Shimizu)

 Title(低速中性子を用いた原子核・素粒子物理学)

 Conf(第70回仁科加速器センター原子核グループ月例コロキウム) At(Wake)

Neutron Oscillation

free neutron $\tau_{n\overline{n}, \text{free}} > 8.6 \times 10^7 \text{ s} (\text{CL} = 90\%)$ $L = \overline{\psi} M \psi$ $|n_{1,2}\rangle = \frac{1}{\sqrt{2}} (|n\rangle \pm |\overline{n}\rangle)$ $m_{1,2} = m_n \pm \delta m$ $\psi = \begin{pmatrix} n \\ \overline{n} \end{pmatrix}$ $M = \begin{pmatrix} E_0 & c^2 \delta m \\ c^2 \delta m & E_0 \end{pmatrix}$ $I(t) = I(0) \sin^2 \frac{c^2 \delta m}{\hbar} t$

in (magnetic) field

$$M = \begin{pmatrix} E_0 + \Delta E & c^2 \delta m \\ c^2 \delta m & E_0 - \Delta E \end{pmatrix} \qquad |n_1\rangle = \cos\theta |n\rangle + \sin\theta |\overline{n}\rangle \\ |n_2\rangle = \sin\theta |n\rangle - \cos\theta |\overline{n}\rangle \\ \Delta E = \mu_n B \\ \tan\theta = \frac{c^2 \delta m}{\Delta E + \sqrt{\Delta E^2 + (c^2 \delta m)^2}} \qquad I(t) = I(0) \frac{c^4 \delta m^2}{c^4 \delta m^2 + \Delta E^2} \sin^2 \frac{\sqrt{c^4 \delta m^2 + \Delta E^2}}{\hbar} t \\ m_{1,2} = m_n \pm \sqrt{\frac{\Delta E^2}{c^4} + \delta m^2} \qquad \frac{\Delta E \tau}{\hbar} = \frac{\mu_n B L}{\nu \hbar} < 1$$

 $\tau_{n\bar{n},\text{bound}} > 1.3 \times 10^8 \text{ s} (\text{CL} = 90\%)$

Date(2013/05/14) by(H.M.Shimizu)Title(低速中性子を用いた原子核・素粒子物理学)Conf(第70回仁科加速器センター原子核グループ月例コロキウム) At(Wako)

