Science of Magnetic Skyrmions

Yoshi TOKURA RIKEN Advance Science Instituite Department of Applied Physics, University of Tokyo,

The 3rd energy revolution based on emergent electromagnetism in solids

Topological spin textures to host magneto-electric coupling

Observation of skyrmions

Skyrmion dynamics toward skyrmionics

Collaborators

• Univ. of Tokyo (Japan)

Y. Kanazawa, N. Nagaosa, Y. Onose,
T. Arima, S. Ishiwata, A. Tsukazaki,
M. Ichikawa, M. Kawasaki, S. Seki
Y. Shiomi, K. Shibata, F. Kagawa,
Y. Okamura, M. Mochizuki

• RIKEN (Japan)

X. Z. Yu, Y. Tokunaga, Y. D. Okuyama, Y. Taguchi

• NIMS (Japan)

Y. Matsui, K. Kimoto, W. Z. Zhang

Sung Kyun Kwan Univ. (Korea)

J. H. Han, J. H. Park

MPI (Germany) D. S. Inosov, J. H. Kim, B. Keimer

PSI (Switzerland)

J. White, N. Egetenmeyer, J. Gavilano

- Groningen Univ. (Holland)
 M. Mostovoy
- Fudan Univ. (Peoples R China) Yufan Li, Xiofeng Jin

Three Energy Revolutions

I : Stream energy / electromagnetic induction

conversion from mechanical to electromagnetic energy
based on classic electromanetismElectromagnetic induction $\operatorname{rot} E = -\partial B / \partial t$

(E and H fields are not independent.)

II: Nuclear energy

nuclear generator/ electromagnetic induction based on nuclear physics/relativistic quantum mechanics

conversion from mechanical to electromagnetic energy

http://www.kyuden.co.jp/effort_thirmal_new_i_karita.html

III : Solid state electronics

energy conversion among light , heat, and information (without mechanics) based on emergent electromagnetism (relativistic quantum mechanics in a solid)

Energy Innovations for sustainable society

What is Emergent Matter Science?

"More is different" P.W.Anderson ~beyond reductionism~

Surprising phenomena/functions in condensed matter/molecular assembly, never anticipated from the individual components, e.g., electrons, spins, and molecules.

Colossal responses in **Strong Correlation Physics** Element strategy/molecular design in **Supramolecular Chemistry** Integrated functions in Quantum Information Electronics

Emergent Matter Science

Magneto-electric effect as another electronics"

Pierre Curie's Conjecture (1894)

There should be materials whose magnetism is induced by electric field and whose polarization by magnetic field.

electric control of magentism

$$M_{\alpha} = G_{\beta\alpha} E_{\beta}$$

magnetic control

Observation on Cr₂O₃

I.E.Dzyaloshinskii, Sov.Phys.-JETP **10**, 628 (1959) D.N.Astrov, Sov.Phys.-JETP **11**, 708 (1960)

図2 研究室でのキュリー夫妻 [出典] ワインバーグ(本間三郎訳):電子と原子核の発見。 日本経済新聞(1986)

Importance of Multiferroics

Polarization reversal upon magnetization reversal

Yamasaki et al. PRL (2006)

Perfect magnetization reversal by electric field; no power loss

2000

Ρ

3000

Magnetic bubbles (up to 1980's)

Cylinder-like domain in ferromagnets (Bubble) → Existence of bubble used as a bit (0 / 1)

How does bubble memory work ?

cf. Bubble Memory (by Intel, IBM, Sharp etc...)

gradient of B

S N

Bubble can be driven by magnetic field gradient Metallic wire to generate magnetic field + ferromagnetic "guide lane"

Rotation of magnetic field causes bubble motion along guide

Toward electrical control of magnetism

Domain wall motion by spin transfer torque

lower-current drive or E-field drive?

Quantum Berry phase and spin chirality

Skyrmion

Mapping to a sphere

Solid angle $\Omega = 4\pi$

Total spin Chirality $= \frac{1}{4\pi S^3} \int d^2 \mathbf{r} \mathbf{S} \cdot (\nabla_x \mathbf{S} \times \nabla_y \mathbf{S})$ $= N_S \qquad \text{Skyrmion number}$

<u>Cf. Spin chirality</u> $\vec{S}_i \cdot (\vec{S}_i \times \vec{S}_k)$

 $=1/2 \Omega$ Solid angle

Continuum approximation

What is magnetic skyrmion?

Topologically-stable spin vortex with particle-like nature

Lateral component of M ofsome bubbles

5 ~ 100 nm

"skyrmion number"

$$S = rac{1}{4\pi} \int ec{n} \cdot rac{\partial ec{n}}{\partial x} imes rac{\partial ec{n}}{\partial y} \mathrm{d}ec{r} = -1$$

a pair of Bloch lines

Helical spin order in B20-type crystals

Crystal structure

- : Transition-metal element
- : Group 14 element
 - Cubic (P2₁3)
 - Noncentrosymmetric

Magnetic structure

Three well-separated energy scales

ferromagnetic interaction($\mathbf{S}_i \cdot \mathbf{S}_j$) > Dzyaloshinsky-Moriya interaction($\mathbf{S}_i \times \mathbf{S}_j$) > magnetic anisotopy \rightarrow one-handed helical spin structure

(a long wavelength 17.5 - 230 nm, weakly locked helix direction <111> or <100>)

Chiral lattice structure

Helical spin order in B20-type crystals

Crystal struct

- : Transition-metal element
- : Group 14 element
 - Cubic (P2₁3)
 - Noncentrosymmetric

Magnetic structure

Three well-separated energy scales

ferromagnetic interaction($\mathbf{S}_i \cdot \mathbf{S}_j$) > Dzyaloshinsky-Moriya interaction($\mathbf{S}_i \times \mathbf{S}_j$) > magnetic aniso \rightarrow one-handed helical spin structure

(a long wavelength 17.5 - 230 nm, weakly locked helix direction <111> or <100>)

Magnetic phase daigrams of B20 TMSi, TMGe

Toward real space observation of Skyrmion

otruoturo

M. Uchida, Y. Onose, Y. Matsui, Y. Tokura, Science (2006)

$$H = \sum \left(-J\vec{S}_i \cdot \vec{S}_j + \vec{D}_{ij} \cdot (\vec{S}_i \times \vec{S}_j) \right)$$

Helical spin structure

Long period ~*aJ/D* ~*10nm-300nm*

Real Space Observation of Skyrmion crystal

X.Z. Yu, Y.T *et al.* Nature (2010).

H-T Phase diagram

Bulk sample

FeGe: from helical to skyrmion crystal at 260K

X.Z. Yu et al. Nat. Mater.(2010)

H=0

Near room-temperature formation of SkX in

X. Z. Yu, <u>N. Kanazawa</u>, Y. Onose, K. Kimoto, W.Z. Zhang , S. Ishiwata, Y. Matsui, and Y. Tokura, Nature Mater. 10 106 (201

24

FIG. 2 Yu et al.

Hall effect in magnetic materials

e.g.) Anomalous Hall effect in Ni

Empirical relation

$$\rho_{yx} = R_0 B_z + \mu_0 R_{\rm S} M$$

Normal Hall effect due to Lorentz force Anomalous Hall effect proportional to *M*

- × due to the magnetic field by $M \rightarrow too small$
- ✓ due to the Berry phase in k-space

Berry phase and Hall effect

Real-space fictitous magnetic field in a skyrmion spin texture

A: skyrmion size

High skyrmion density *≠* Large topological Hall Effect

Ultrathin epitaxial thin films of MnSi

Skyrmion phase mapping by topological Hall resistivity

Yufan Li, Kanazawa, Kagawa

Conventional anomalous + normal Hall effects

$$\rho_{yx}^{A} = R_0 B_z + \mu_0 R_S M_z$$
$$\mu_0 R_S = S_A \rho_{xx}^2$$

See also the late paper on FeGe thin film; S. X. Huang and C. L. Chien, Phys. Rev. Lett. **108**, 267201 (2012)

Magnetic phase daigrams of B20 TMSi, TMGe

Neutron diffraction patterns at H = 0

Magnetic Bragg peaks $|\mathbf{q}| = |\mathbf{Q} \pm \mathbf{Q}_m|$

N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, and Y. Tokura, PRL 106 156603 (2011).

-Helical structure -modulation vector : Q ||<100> -Helical period : $\lambda = 3 \text{ nm} - 6 \text{ nm}$

arge topological Hall effect

Cf) MnSi : λ = 17.5 nm $\rho^{T}_{vx} \sim -4.5 \text{ n}\Omega \text{ cm}$

Topological Hall effect in MnGe

$H > H_{\rm C}$

-0.2

70 K

Induced ferromagnetic state \rightarrow "Conventional" anomalous Hall effect Solid lines: estimate of $\rho_{yx}^{A} = R_0 B_z + \mu_0 R_S M_z$ $\mu_0 R_S = S_A \rho_{xx}^2$ **Components of THE** 0.1 $\rho^{\mathrm{T}}_{\mathrm{yx}}$ ($\mu\Omega$ cm) 0 5 K 10 K 20 K

Nearly temperature independent

 $\mu_0 H(T)$

50 K

5

30 K

15

10

topological Hall effects via Skyrmion lattice

Small angle neutron scattering on MnGe (polyXtal)

Evidence for multiple-q structure even at B=0

Possible 2D (meron) or 3D (hedgehog) Skyrmion Xtal at B=0

Fictitiuous magnetic flux

e		one flux quantum/(nm) ² ~4000T (double-excahnge model)				1
		4	$\Delta \rho_{yx} \propto \Phi$	(Sk der	nsity)	
50	λ(magne im]	tic)	Φ(cal.) [T]	Δρ _{yx} (topol [nΩcm]	ogical)
FeG	е	70		1	5	
Mns	Si	18		28	5	
Mno	Ge	3.0		1100	200	
Nd ₂ M (refe	1o ₂ O ₇ rence)	~0.5		~40000	6000)

Pendulum like syrmions in ubiquitous magnet: M-type ferrite

Yu et al. PNAS (2012)

Biskyrmions in layered manganites

Current drive of skyrmions and emergent EM field

Domain wall motion by spin transfer torque

Current driven skyrmion flow in FeGe film

200 nm

100 nm

No pinning effect on skyrmion motion

$$\frac{\mathrm{d}\vec{M_{\vec{r}}}}{\mathrm{d}t} = \gamma \vec{M_{\vec{r}}} \times B_{\vec{r}}^{\mathrm{eff}} - \frac{\alpha}{M} \vec{M_{\vec{r}}} \times \frac{\mathrm{d}\vec{M_{\vec{r}}}}{\mathrm{d}t} - \frac{pa^3}{2eM} \left(\vec{j} \cdot \vec{\nabla} \right) \vec{M_{\vec{r}}} - \frac{pa^3\beta}{2eM^2} \left[\vec{M_{\vec{r}}} \times \left(\vec{j} \cdot \vec{\nabla} \right) \vec{M_{\vec{r}}} \right], \qquad \text{Iwasaki-Mochizuki-Nagaosa (2012)}$$

Simulation of current-driven skrymions under pinning sites

No intrinsic pinning of skyrmions!

Cu₂OSeO₃: Chiral Magnetic Insulator

c.f. JWG Bos, CV Colin, and TTM Plastra, PRB (2010).

⊕ Cu1 Cu2 $\bigcirc 0$

P2₁3

Lorentz TEM observation of thin flake of Cu₂OSeO₃

Seki et al. Science (2012)

Skyrmion crystal phase: bulk vs. thin film

Seki et al. PRB (RC), 85, 220406(2012).

See also Adams et al. PRL, 108, 237204 (2012).

Cu_2OSeO_3 : *P* and ρ distributions in skyrmion

Toward skyrmionics

Skyrmions as stabilized in a thin film form

Emergent EM fields hosted by skrymions

MnGe 3D Skyrmion crystals at zero field

Skrymion transport and dynamics

- Ultra-low current driven skyrmion motion (~10A/cm²)
- Skyrmions in insulators/multiferroics toward E- control
- Ratchet motion of skyrmions in thermal equilibrium
- Electric generation and operation of skyrmions

