

2重ベータ崩壊と 宇宙の物質生成

岸本忠史 阪大理、RCNP

内容

- ・ビッグバンと物質の生成
 - 粒子と反粒子
- ニュートリノ振動実験とニュートリノ質量
- ・2重ベータ崩壊とマヨラナ質量
- ・世界の研究の現状
- 阪大理での取り組み ⁴⁸Ca -ELEGANT VI, CANDLES, MOON
- ・ 将来の発展

宇宙のバリオン(原子核)密度

Candles

ニュートリノ質量

- 振動現象の確立
 - -ニュートリノの種(e、μ、τ型)が変化
 - 質量の差、混合 $V_{lL} = \sum_{j=1}^{3} U_{lj} V_{jL}$ 質量の固有状態^{j=1} 弱い相互作用の 固有状態
 - SK, GALLEX-SAGE, SNO, KamLAND
 - 更に多くの実験が進行・計画中
- ・ニュートリノは質量を持つ

m_vの測定

- ³H β decay
 (Q_β: 18.7keV)
- $0\nu\beta\beta$ decay
- CMBR
 - WMAP + SDSS + ...

Figure: Pre-Spectrometer and Main Spectrometer

KATRIN実験

ЭS

7

tritium ß-decay and the neutrino rest mass

$$^{3}\text{H} \rightarrow ^{3}\text{He} + \text{e}^{-} + \overline{\nu}_{e}$$

superallowed

half life : $t_{1/2} = 12.32 a$ *B end point energy* : $E_0 = 18.57 \text{ keV}$

KATRIN実験

構造の成長: ニュートリノ質量

Candles

・ニュートリノはマヨラナ粒子

- -ニュートリノだけがマヨラナ粒子であり得る
 - ・他の荷電粒子(クォーク・レプトン)は全てディラック
- マヨラナ質量を持つことが示されると
 - -粒子と反粒子が結ばれる
 - ・ 粒子数の保存則が破れる
 - -宇宙の粒子数(バリオン数)を作れる
 - ・レプトジェネシス

Candles

ディラック質量項
 - 右巻きと左巻きを結ぶ

$$\mathcal{L}_{m_L} = -\frac{m_L}{2} \overline{(\nu_L^0)^c} \nu_L^0 + \text{ h. c.}$$

 $\mathcal{L}_D = -m_D \overline{\nu_B^0} \nu_L^0 + \text{ h. c.}$

- マヨラナ質量項
 - 粒子と反粒子を結ぶ
 - ・粒子数の保存則を破る
 - 中性のニュートリノだけ可
 - 左巻きと右巻きに別の質量可
 - ニュートリノは左巻きだけ
 - ・相互作用(質量)は左巻きだけ
 - 右巻きは重い(シーソー機構)
- 2重ベータ崩壊の研究

ニュートリノのタイプ

シーソー機構

$$L_{m} = -m_{D} \overline{\Psi_{R}} \Psi_{L} - \frac{m_{R}}{2} \overline{\Psi_{R}^{C}} \Psi_{R} + h.c.$$
Condles
$$\vec{\tau}_{r} = -m_{D} \overline{\Psi_{R}} \Psi_{L} - \frac{m_{R}}{2} \overline{\Psi_{R}^{C}} \Psi_{R} + h.c.$$

$$\vec{\tau}_{r} = -m_{D} \overline{\Psi_{R}} \nabla_{r} = \frac{\pi_{R}}{2} [\overline{\Psi_{L}^{C}}, \overline{\Psi_{R}}] \times \begin{bmatrix} 0 & m_{D} \\ m_{D} & M_{R} \end{bmatrix} \times \begin{bmatrix} \Psi_{L} \\ \Psi_{R}^{C} \end{bmatrix} + h.c.$$

$$m \oplus (m - \frac{m_{D}^{2} / M_{R}}{2} 0)$$

$$m \sim \begin{bmatrix} m_{D}^{2} / M_{R} & 0 \\ 0 & M_{R} \end{bmatrix}$$

$$\frac{\text{Finder State S$$

マヨラナニュートリノ

 Today, Majorana is particularly well known for his ideas about neutrinos. Bruno Pontecorvo, the "father" of neutrino oscillations, recalls the origin of Majorana neutrinos in the following way: Dirac discovers his famous equation describing the evolution of the electron; Majorana goes to Fermi to point out a fundamental detail: " I have found a representation where all Dirac γ matrices are real. In this representation it is possible to have a real spinor that describes a particle identical to its antiparticle."

CERN courior

Dirac:反粒子 Majorana:右巻き粒子 Dec/12/07/ ^{理研}

マヨラナ: フェルミに よってアインシュタイン やディラックを超えて ニュートン、ガリレオと 並ぶ天才と称された。 Mystery of Majorana 17

レプトジェネシス

福来、柳田 (1986) _{Candles}

- ・ マヨラナ (レプトン数非保存)
- CP (粒子•反粒子非対称)
- ・インスタントン効果 (レプトン→バリオン)
 - t'Hooft (標準模型)

• 現在はその確率は微小だが、宇宙初期では大きい

Proton decay is irrelevant to the Baryogenesis
 Dec/12/07(理研究的)

レプトン数の生成

- Fukugita Yanagida '86
- ・レプトン数を破る相互作用を導入

- 反レプトン数 ⇒ 物質数
- ニュートリノのマヨラナ質量

2重ベータ崩壊の観測

2重ベータ崩壊核

原子核

 - ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo,
 - ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd
 - 陽電子崩壊

- 超稀現象
 - 10^{20~25}年
- 自然界にはバックグランドの過程がいっぱい
 - 超高感度検出器開発
 - 超低バックグランド環境 地下実験施設

- 崩壊率 [T_{1/2}]⁻¹ m_v² (右巻きを無視)
- 1桁 limit を下げる →
 - 2桁長い寿命(稀現象)の探索
 - -2桁(最低限)多い物質量

超稀現象 低バックグランド測定₂₁

研究の現状

Isotope	Exposure	Background	$\mathbf{Half} extsf{-Life}$	$\langle m_{etaeta} angle$
	(kmole-y)	(counts)	Limit (y)	(meV)
48 Ca	5×10^{-5}	0	$> 1.4 \times 10^{22}$	< 7200 - 44700[105]
76 Ge	0.467	21	$>1.9 imes10^{25}$	< 350[106]
76 Ge	0.117	3.5	$>1.6 imes10^{25}$	< 330 - 1350[107]
76 Ge	0.943	61	$= 1.2 \times 10^{25}$	= 440[103]
82 Se	7×10^{-5}	0	$> 2.7 \times 10^{22} (68\%)$	< 5000[108]
$^{100}\mathrm{Mo}$	5×10^{-4}	4	$> 5.5 \times 10^{22}$	< 2100[109]
$^{116}\mathrm{Cd}$	1×10^{-3}	14	$> 1.7 \times 10^{23}$	< 1700[110]
$^{128}\mathrm{Te}$	Geochem.	NA	$>7.7 imes10^{24}$	< 1100 - 1500[111]
$^{130}\mathrm{Te}$	0.025	5	$> 5.5 \times 10^{23}$	< 370 - 1900[112]
$^{136}\mathrm{Xe}$	$7 imes 10^{-3}$	16	$> 4.4 \times 10^{23}$	< 1800 - 5200[113]
$^{150}\mathrm{Nd}$	$6 imes 10^{-5}$	0	$> 1.2 \times 10^{21}$	< 3000[114]

Dec/12/07/ 理研

NEMO3 : Neutrino Ettore Majorana Observatory

Candles

France, United-States, England, Japan, Tcheck Rep., Russia Started taking data : Feb. 2003, duration : 5 years, Laboratoire Souterrain de Modane (4800 m.w.e)

Tracking detector (6180 Geiger cells in He+alcohol): Vertex $\sigma_t = 5 \text{ mm}$, $\sigma_z = 1 \text{ cm}$ **Calorimeter** (1940 plastic scintillators – PMTs low radioactivity) FWHM=14% (1 MeV) Bkg: gamma + neutrons shield, magnetic field, materials low radioactivity

ββ EVENT OBSERVED BY NEMO-3...

 $\beta\beta2\nu$ event

NEMO 3

 $> 4.6 \times 10^{23} \text{ yr}$

PRL 95, 182302 (2005) Candles

> 1.0 \times 10²³ yr

阪大理での研究

- ELEGANTS III ⁷⁶Ge (source = det.)
 - Solid state detector
- ELEGANTS V ¹⁰⁰Mo (source \neq det.)
 - Plastic scint. + chamber
 - MOON (Nomachi)
- ELEGANTS VI ⁴⁸Ca (source = det.)
 CaF₂(Eu) scintillator
- CANDLES ⁴⁸Ca (CaF₂ in Liquid scintillator)

なぜ⁴⁸Ca

- ・Q値が最大 4.27 MeV(次の¹⁵⁰Ndは3.3 MeV)
 - 崩壊率が大きい(核行列要素の不定性はあるが)
 - BGが少ない(自然放射線; γ: 2.6 MeV, β: 3.3 MeV)
- 自然存在比→0.187%
 - 濃縮同位元素→ 高価 (no Gas)
 - ~10g x 2 (in the world)
- 初期の研究(最近は濃縮同位元素のある核)
- 次世代
 - $-M_v \sim T^{-1/2} \sim M^{-2}$ (BG無ければ)
 - ~ M⁻⁴ (BG limited なら)
 - ⁷⁶Ge experiment (BG が見えている)
 - ⁴⁸Ca (no BG) 大きなQ値.

ELEGANT VI

大塔コスモ観測所 Oto Cosmo Observatory

tunnel constructed for railroad (but not used)

470m (1.3 km water equivalent) shield

旧国鉄の五新線(奈良県五條市~和歌山県 新宮市)用の鉄道トンネルだが、結局線路は 敷かれず。

神岡

大阪大学

センター

核物理研究

地下実験室(トンネル内)

m_v=1~10⁻²eV まで探索するには

• 大型検出器

Candles

- Huge amount of materials
- 低放射性バックグランド
 - 遮蔽(Active and Passive)
 - 低バックグランド材料
 - 信号処理による低バックグランド化
- 高分解能
 - 2vββ 空のバックグランド

CANDLES

<u>CA</u>lcium fluoride for studies of <u>N</u>eutrino and <u>D</u>ark matrters by <u>Low Energy Spectrometer</u> Candles

バックグランド @ Q 値

- No radioactive backgrounds @ ~4 MeV Candles
 - $-\gamma \sim 2.6$ MeV, $\beta \sim 3.3$ MeV, $\alpha \sim 2.5$ MeV(quench)
- Successive decay of $\alpha \beta \gamma$

 $-\sim1\mu$ sec decay time

放射性不純物濃度

Dec/12/07/ 理研

1/3 ~1/4 of CaF₂(Eu) (石英窓 PMT) 発光波長中心 U.V. region (275 nm)

- 可視光 (match PMT sensitivity)
- ・ 光量の増大(Light yield)

CANDLES III

- 阪大理で建設
- CaF₂(pure)
 - 10³ cm³ × 60 crystals
 total weight : 191 kg
- 液体シンチレーター
 - $\phi 1000 \times h1000$ acrylic container
 - H₂O Buffer passive shield
 - $\phi 2800 \times {}^{h}2800$
 - safety regulation
- 純化装置
- PMTs

- 15" PMT (×19) : R2018

- 13" PMT (×29) :R8055 ^{Dec/12/07/ 理研}

CANDLES III (prototype)

¢2800 × ^h2600

10cm³ x 56 CaF₂

Dec/12/07/ 理研

CANDLES III

Photomultiplier Tube(13inch)

Inside View

Dec/12/07/ 理研

■ position of event is reconstructed by PMT's ADC and its position

道のり

– achieved

ELEGANTS VI

- 出発点

- CANDLES I, II
- CANDLES III
 - 10cm³ cube (100 crystals) ~0.5 eV
 - BG of CaF₂ ~30 μ Bq/kg
- CANDLES IV
 - 10cm³ cube (1000 crystals) 3t
 - -BG of CaF₂ ~10 μ Bq/kg for 0.2 eV (HDM超)

__神岡(宇宙線研)

Dec/12/07/ 理研

CANDLES IV

 $10 \times 10 \times 10 \text{ cm}^3 \text{ CaF}_2$ (1000 cubes) 3.2 t liquid scintillator Vessel (⁴⁸Ca) 3.2 kg

1.BG

1. Needs R&D

- 2. Energy resolution
 - 1. More PMT & gain controal

将来

- 同位体濃縮
 - -2重ベータ崩壊研究
 - 大量の物質→同位体濃縮(⁷⁶Ge, ¹⁰⁰Mo, ¹²⁸Te)

• 例外

-48Ca, 150Nd

- CANDLES
 - V 100トン: 0.03 eV (発見)

- 濃縮法の開発

・原子核実験施設、核物理研究センター・・・・