最高エネルギー宇宙線観測の進展 - 10²⁰ 電子ボルト宇宙粒子線の起源を探る-

2011年5月17日 理研コロキウム

東京大学宇宙線研究所 TAグループ・福島正己

直接観測による宇宙線粒子種 ~ Cosmic Abundance

極高エネルギー 10²⁰ eV で 何が起きているのか?

測定対象のエネルギー

粒子種	エネ	ルギー
加速器電子ビーム LEP	100 GeV	$\gamma = 10^5 E_{CMS} = 10^{11}$
加速器陽子ビーム LHC	10 TeV	$\gamma = 10^4 E_{CMS} = 10^{13}$
最高エネルギーの宇宙線	10 ²⁰ eV	$\gamma = 10^{11} E_{CMS} = 10^{14.5}$
宇宙背景放射	10 - 3 eV	

886秒は280万年
12,700kmは127um
137億年は50日

 $E_{CMS} = 10^{14.5} eV$ $300 TeV \times 300 TeV$ pp collider

Greisen - Zatsepin - Kuzmin (GZK) 限界

411 ph / cm³

Gamma Beam Energy (GeV)

 $\pi^{o} p \text{ or } \pi^{+} n$

 $\gamma + p \rightarrow \Delta (1232)$

~10²⁰ eV を超える宇宙線の伝搬は 50Mpc (1.5億光年)が限界

0.01

 $x E^3$ スペクトル

Energy Scale (約25%)調整済

Log E [eV]

F. Aharonian et al.: The γ-ray supernova remnant RX J1713.7-3946

NASA, ESA, the Hubble Heritage (AURA/STScI)-ESA/Hubble Collaboration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

STScI-PRC08-16a

(Ultra-High Energy Cosmic Rays)

Energy Composition

スペクトル、エネルギー限界? UHECRは、何か? Arrival direction 発生源•発生機構は?

新世代検出器

- AGASA: 明野 空気シャワーアレイ
- HiRes: High Resolution Fly's Eye から
- 2004: Pierre Auger Observatory
- 2007: Telescope Array (TA)

700 - 3000 km² の複合検出器 南北半球

Pierre Auger Observatory

Over 1600 detectors in operation, covering 3000 square kilometres

水タンク地表検出器

大気蛍光望遠鏡

TA望遠鏡は2007年7月から試験観測を開始

CAUTION

4

観測されたシャワーの例

CN.,

Plastic Scintillator 3 m², 12 mm t WLSF readout, 2 layers overlaid

TA地表アレイは2008年3月から観測を始めた。

.3

.8

longitude

2

Event "Side" View

Event Top View

X,Y = counter # number = MeV energy deposit (av U+D) ~ 2.5 MeV for vertical mu

Gnuplot

Data set

- May/2008 Feb/2010 (1.75 years)
- Exposure ~1500km² sr yr (~AGASA 13 years)
- Cuts:
 - LDF χ^2 /ndf < 4.0
 - Border Cut > 1.2km
 - Zenith Angle < 45 degrees
 - Pointing direction uncertainty < 5 degrees
 - Fractional S800 uncertainty < 0.25
- \rightarrow 6264 events

SD event reconstruction

First Estimate of Energy

- Energy table is constructed from the MC
- First estimation of the event energy is done by interpolating between S800 vs sec(θ) lines

アレイと望遠鏡(エネルギー)の比較

- Energy scale is determined experimentally by FD without referring to MC
- Set SD energy scale to FD energy scale using well-reconstructed events seen by both detectors:
- 27% renormalization.
 - Systematic error 19%
 (from systematic error of energy by hybrid analysis)

地表アレイによるスペクトル (TA)

エネルギーはスケールダウン(1/1.27)

Cutoff Energy

	Power E _{break} 前	E _{break} (eV)	Power E _{break} 後	E ½ (eV)	E ½ (ratio)
HiRes	-2.81	10 ^{19.75}	-5.1	10 ^{19.77}	1.12
Auger	-2.59	10 ^{19.46}	-4.3	10 ^{19.52}	0.63
ТА	-2.72	10 ^{19.75}	-4.7	10 ^{19.78}	1.15
GZK 計算 (Berezinsky 1988)				10 ^{19.72}	1.00

$\Delta E_{SYS} = 22\%$ (Auger), 19% (TA)

エネルギー決定の精度

Systematic errors

ltem	Systematic error
Fluorescence yield	12%
Detector	10%
Atmosphere	11%
Primary particle mass	5%
MC correction	3%
Total	19%

Electron Light Source in Utah Desert

Specification

- . electron energy: 40 MeV (max)
- . current: 109 electrons/pulse
- . pulse width: 1 µsec

First light from ELS

FD Observation

Sep.3rd.2010 Beam Shot into the Sky, and Observed by FD

● UHECR の到来は ~10^{19.7} eV から、急激に減少 宇宙背景放射との反応 (GZKカットオフ) と矛盾しない。

〇 Auger実験(南半球)では、カットオフのエネルギーが 小さい。 鉄核と赤外背景放射の反応、(鉄核)の加速 限界でも説明できる。

 Electron Light Source (@TA site) による較正を 計画している。

粒子種による空気シャワー発達(Xmax)の違い

Example of Stereo Event

SD FD FOV

zenith	azimuth	core [km]	energy	Xmax
3.23°	145.9°	0.09, -6.10	7.94 x 10 ¹⁹ eV	757.0 g/cm ²

測定したXmax 分布(データ対MC)

MC/Data Comparison

<Reconstructed Xmax> vs. E

● 10^{18.2} – 10^{20.0}eVで陽子。 変化していない。

<u> O Auger実験(南半球)では、~10^{18.5}eV 以上で</u> 中重核に変わりつつある。

● ~10^{19.4}eV 以上では、陽子・鉄を見分ける 十分な統計がない。

O 極高エネルギーで、新たなハドロン現象? (カラーグラス凝縮、QGP、anything new...)

大規模構造から期待される分布

- XSCz 銀河 カタログ
- 250Mpc 以遠は 等方分布
- すべての銀河は等光度 (D⁻²)
- 銀河中心付近、D < 5Mpc を除外
- ・*陽子の発生と伝搬: E^{-2.7}, GZK effect etc.*
- 方向のsmearing with Θ_{SMEAR}
- 銀河磁場: 反陽子で back tracking

大規模構造で発生した陽子からの分布 $(\Theta_{SMEAR} = 6^{\circ})$

反陽子で back tracking

銀河磁場モデル by Sun et al.(2008)

Taylor et al. (2009) by NRAO VLA Sky Survey

大規模構造で発生した陽子からの分布 $(\Theta_{SMEAR} = 6^{\circ})$

E > 10¹⁹ *eV*, 655 *events*

UHECRで銀河の大規模構造が見えるか (到来方向分布仮説の検証)

分布仮説		E > 10 ¹⁹ eV	$E > 10^{19} eV$ $E > 10^{19.6} eV$	
一様等方		OK (compatible)	OK	矛盾 (incompatible) ただし2σ の効果
大規模構造 起源の陽子	銀河磁場なし	Θ _{SMEAR} > 25 ⁰ ならば compatible	OK	OK
	銀河磁場あり	"strong" Toroidal Hallo があれば compatible	OK	OK

LSS相関が見える?

Cen A ~ 4 Mpc

Xray picture

Optical picture

TAのAGN相関

Event Cluster (点源·自己相関)

● 到来方向は、10¹⁹ eV 以上で ほぼ一様等方

〇 宇宙の物質分布 (LSS) と相関の可能性
 AGN (Cen A) と相関の可能性

● 点源・クラスターは未だ見えず

O 統計精度? カタログ選択バイアス?

まとめ新世代実験 Auger & TA: 大規模・ハイブリッド・南北・新較正

観測量	分解能	絶対スケール	
エネルギー	±15%	±20%	望遠鏡による
到来方向	~10	~5⁰ (p@10 ^{19.6} eⅤ, 銀河磁場)	地表アレイによる
Xmax (粒子種)	~20 g/cm ²	~60 g/cm ² (p@10 ¹⁹ eV, fluct.)	P-Feの差 <~100 g/cm ²

へペクトルに Cutoff あり。成因は GZK(?)
 発生源の示唆。宇宙の物質分布に従う? 銀河磁場の効果。点源天体(Cen A)?
 到来粒子種は、p - Fe. 北と南で違う??
 新しいハドロン現象??
 E_{地表アレイ} = 1.3 x E_{望遠鏡} ・ µ粒子の超過 など

O 起源·加速機構は、未だ不明

Extreme Universe Space Observatory

JEM-EUSO Mission Toshikazu Ebisuzaki RIKEN

The Symposium on the Recent Progress of UHECR Observation Dec. 12, 2010, Nagoya Congress Center, Nagoya International Symposium on the Recent Progress of Ultra-High Energy Cosmic Ray Observation December 10-12, 2010 Nagoya, Japan

Microwave Detection of UHECR: R&D efforts

MIDAS

EASIER

1. スーパー 地上検出器: (アレイ+望遠鏡)

2. シャワー の電波観測

(a) Molecular Bremsstrahlung

(b) Radio radar

