
Various Phases and Interference in
Quantum Mechanics: In memory of

late Dr. Akira Tonomura

Kazuo Fujikawa (Nishina Center)

Dr. Akira Tonomura at Hitachi Laboratory
passed away on May 2, 2012 at the age of 70.
As a classmate at University of Tokyo, I would
like to give a brief review of his contributions
to basic physics and related theoretical issues.
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I. Goodbye Akira!

There appeared a short column in the Asahi,
a Japanese newspaper, by Mr. Tsuji several
days after Tonomura’s funeral ceremony in Tokyo.
This is about an address of Prof. Yang at the
ceremony. In brief,
1. Tonomura made fundamental contributions
to quantum physics, due to the advise of Prof.
Yang
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2. Tonomura’s contribution to basic physics,
as a corporate physicist, is quite singular in
Japan
3. These were the golden days of Japanese
production industries
4. Prof. Yang told Tonomura that it takes 10
years to grow trees but it takes 100 years to
grow (a community of) scientists
5. Japanese industry is now in a difficult situ-
ation, but we need to keep this good tradition.
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At University of Tokyo, two students per-
form experiments by making a pair.

After graduation, we have not met each other
for several years. When I was a postdoc at En-
rico Fermi Institute in Chicago in 1971, Tono-
mura came to Chicago to see Prof. Crewe, an
expert of electron microscope. Tonomura was
an expert of a needle of the electron gun.
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Again after several years of gap, in ”1982”,
Tonomura sent me the copy of his paper to-
gether with copies of the referee reports he
received from Phys. Rev. Lett. on his first
experiment on Aharonov-Bohm effect.

One of the referee reports said that ”There
is no Aharonov-Bohm effect as such, thus it is
meaningless to test it by experiment”.

Apparently, Tonomura was in a difficult sit-
uation.
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I was aware of a paper by Profs. Yang and
T.T. Wu on ”possible non-Abelian generaliza-
tion of the Aharonov-Bohm effect”, PRD12
(1975) 3845. I was thus confident that Prof.
Yang believes in the Aharonov-Bohm effect. I
suggested Tonomura to get contact with Prof.
Yang. Apparently, Tonomura did and Tono-
mura had a chance to talk to Prof. Yang quite
soon later, when Prof. Yang visited Tokyo in
”1982”.
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Since then Tonomura received the advise of
Prof. Yang on various aspects of the funda-
mental physics related to gauge fields and phases
in quantum physics in general.

I was quite happy that I could be helpful to
Tonomura at the very beginning of his adven-
ture into basic physics with his technology of
electron microscope. He was very successful
indeed.
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His major achievements include
1. Confirmation of the Aharonov-Bohm effect
without any doubt. Very few people doubt the
effect nowadays, in contrast to back ”1982”.
2. Very beautiful (one of 10 most beautiful
experiments in the history of physics) exper-
iment of the electron intereference through a
double slit.
3. Observation of the movement of the mag-
netic vortices in the superconductor
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II. Various Phases in Quantum Physics

I would like to talk on subjects related to
Tonomura’s experiments on two phases,

1. Double-slit experiment related to ”geomet-
ric phases”,

2. Aharonov-Bohm effect related to gauge fields,

3. Anomalies.
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We illustrate the use of the second quantiza-
tion with the action

S =

∫

dtd3x

[

ψ̂†(t.~x)
(

i~
∂

∂t
− Ĥ(t)

)

ψ̂(t, ~x)

]

for a time-dependent Hamiltonian Ĥ(t). We
then expand

ψ̂(t, ~x) =
∑

n

ĉn(t)vn(t, ~x)
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∫

d3xv⋆n(t, ~x)vm(t, ~x) = δn,m.

For the fermion, we impose anti-commutator
{

ĉl(t), ĉ
†
m(t)

}

= δlm

The Fock states are defined by

|l〉 = ĉ
†
l (0)|0〉
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By inserting the expansion into the action S,

S =

∫

dtd3x{
∑

n

ĉ
†
n(t)i~∂tĉn(t)

−
∑

n,m

[v⋆n(t, ~x)Ĥ(t)vm(t, ~x)

−v⋆n(t, ~x)i~∂tvm(t, ~x)]ĉ
†
n(t)ĉm(t)}

Thus the appearance of ”geometric phase” is
automatic.
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The solution of the conventional Schrödinger
equation with the initial condition ψ(0, ~x) =
vn(0, ~x) is given by

ψn(t, ~x) = 〈0|ψ̂(t, ~x)ĉ
†
n(0)|0〉
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This second quantized formulation contains
the following gauge (or redundant) freedom

ĉn(t) → e−iαn(t)ĉn(t), vn(t) → eiαn(t)vn(t)

where the phase freedom {αn(t)} are arbitrary
functions of time.

Under this hidden gauge transformation

ψn(t, ~x) = 〈0|ψ̂(t, ~x)ĉ
†
n(0)|0〉 → eiαn(0)ψn(t, ~x).

Ray representation of the state vector.
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What is the physical implication of this
hidden gauge symmetry?

The answer is ”it controls all the geometric
phases, either adiabatic or non-adiabatic”.

In the analysis of geometric phases, it is cru-
cial that the combination

ψ⋆n(0, ~x)ψn(t, ~x)

is manifestly gauge invariant.
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Exactly solvable example:

Motion of a spin inside the rotating magnetic
field

B(t) = B
(

sin θ cosϕ(t), sin θ sinϕ(t), cos θ
)

and ϕ(t) = ω0t with a constant ω0.
Action is written as

S =

∫

dt

[

ψ̂†(t)
(

i~
∂

∂t
+ B · σ/2

)

ψ̂(t)

]

,

with σ Pauli matrix.
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Field operator

ψ̂(t, ~x) =
∑

l=±

ĉl(t)wl(t)

with the anti-commutation relation,
{

ĉl(t), ĉ
†
m(t)

}

=
δlm.

The effective Hamiltonian for the isolated
spin system is exactly diagonalized.
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w+(t) =

(

e−iϕ(t) cos ϑ2
sin ϑ2

)

, w−(t) =

(

e−iϕ(t) sin ϑ2
− cos ϑ2

)

with ϑ = θ − θ0 and the constant parameter
θ0 defined by

tan θ0 =
~ω0 sin θ

B + ~ω0 cos θ
. (1)
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Effective Hamiltonian

Ĥeff(t) ≡
∑

l

Elĉ
†
l (0)ĉl(0)

with time-independent effective energy eigen-
values

E± = w
†
±(t′)

(

Ĥ − i~∂t′
)

w±(t′) (2)

= ∓
1

2
B cos θ0 −

1

2
~ω0
[

1 ± cos(θ − θ0)
]

.
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The exact solution is given

ψ±(t)

= 〈0|ψ̂(t)ĉ
†
±(0)|0〉

= w±(t) exp

[

−
i

~

∫ t

0
dt′w

†
±(t′)

(

Ĥ − i~∂t′
)

w±(t′)

]

,

= w±(t) exp

[

−
i

~
E±t

]

, (3)

where the exponent has been calculated in Eq.(2).
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w±(T ) = w±(0) with the period T = 2π/ω0,
and the solution is cyclic (namely, periodic up
to a phase freedom) and, as an exact solution,
it is applicable to the non-adiabatic case also.

For an arbitrary time-dependent B(t), any
exact solution of the Schrödinger equation can
be written in the form of Eq.(3) , if one chooses
basis vectors w±(t) suitably.
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Adiabatic limit |~ω0/B| ≪ 1: θ0 → 0.

ψ±(t) = w±(t) exp

[

−
i

~
[−

1

2
~ω0
(

1 ± cos(θ − θ0)
)

t

]

× exp

[

−
i

~
[∓

1

2
B cos θ0]t

]

(4)

⇒ w±(t) exp

[

i

2
[ω0
(

1 ± cos θ
)

t

]

× exp

[

−
i

~
[∓

1

2
B]t

]

where the first phase factor is called geometric
phase, and the second phase factor as dynam-
ical phase.
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The conventional ”Berry’s phase”

exp [iπ(1 ± cos θ)] (5)

is recovered after one cycle t = T = 2π/ω0 of
motion.

This Berry’s phase is known to have an ap-
proximately topological meaning as the phase
generated by a magnetic monopole located at
the origin of the parameter space B.
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Note that the dynamical phase in (4) van-
ishes at B = 0, namely, the level crossing
appears in the conventional adiabatic approx-
imation.
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In the generic case with period T = 2π
ω0

, one

can measure ψ
†
+(0)ψ+(T ) by the interference

|ψ+(T ) + ψ+(0)|2 = 2|ψ+(0)|2 + 2Reψ
†
+(0)ψ+(T )

= 2 + 2 cos[(µB cos θ0)T −
1

2
Ω+]

where

Ω+ = 2π[1 − cos(θ − θ0)]

stands for the solid angle drawn byw
†
+(t)~σw+(t).
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Non-adiabatic limit |~ω0/B| ≫ 1:

θ0 → θ in Eq.(1) so that the geometric phase
vanishes
exp
[

− i
~
[−1

2~ω0
(

1 ± cos(θ − θ0)
)

2π
ω0

]

= 1.

Namely, the adiabatic Berry’s phase is smoothly
connected to the trivial phase inside the ex-
act solution and thus the topology of Berry’s
phase is trivial.
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In our unified formulation of adiabatic and
non-adiabatic phases, we can analyze a tran-
sitional region from the adiabatic limit to the
non-adiabatic region in a reliable way, which
was not possible in the past formulation.

Cf. Majorana in 1930s.
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Gauge invariance of geometric phases.

ψ
†
l (0)ψl(t)

is manifestly gauge invariant. Its phase be-
comes

βl = arg

{

w
†
l (0)wl(T ) exp

[

i

∫ T

0
dtw

†
l (t)i∂twl(t)

]}

,

(6)

which is also manifestly gauge invariant.
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This βl is shown to be the holonomy of the
basis vector associated with the exact hidden
local symmetry, eiα(t)wn, for all geometric
phases, either adiabatic or non-adiabatic.

This is based on parallel transport condition
∫

d3xw
†
n(~x, t)∂twn(~x, t) = 0.
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Comparison with the conventional formu-
lation in the projective Hilbert space with the
equivalence class (Aharonov-Anandan)

{eiα(t)ψ(t)}

where ψ(t) stands for Schrödinger amplitude.
This equivalence class or gauge symmetry ψ(t) →

eiα(t)ψ(t) is not a symmetry of the Schrödinger
equation i~∂tψ(t) = Ĥ(t)ψ(t).
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As a consequence, the gauge invariant non-
adiabatic phase on the basis of the projective
Hilbert space

β = arg{ψ†(0)ψ(T ) exp[i

∫ T

0
dtψ†(t)i∂tψ(t)]}

(7)

is non-local and non-linear in the Schrödinger
amplitude ψ(t), and thus consistency with the
superposition principle is not obvious.
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In contrast, our βl in Eq. (6), which numeri-
cally agrees with Aharonov-Anandan’s β in (7)
when one uses the exact solution Eq. (8) in the
definition of β, is bi-linear in the Schrödinger
amplitude and thus consistency with the su-
perposition principle is manifest.
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Comparison with Aharonov-Bohm ef-
fect

Some similarities between the Aharonov-Bohm
effect and the adiabatic Berry’s phase. How-
ever, there is a fundamental difference. The
topology of Berry’s phase is valid only in the
ideal adiabatic limit and it is lost once one
moves away from ideal adiabaticity.
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On the other hand, the topology of the Aharonov-
Bohm effect is provided by the external bound-
ary condition for the gauge field,

〈~xf , T |~xi, 0〉

=

∫

D~x exp{
i

~

∫ T

0
[
m~̇x2

2
− e ~A(~x)

d~x

dt
]dt}

The Aharonov-Bohm phase is precise for
the non-adiabatic as well as adiabatic mo-
tion of the electron.
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Geometric phase,

ψ±(t)

= w±(t) exp

[

−
i

~

∫ t

0
dt′w

†
±(t′)

(

Ĥ − i~∂t′
)

w±(t′)

]

= w±(t) exp

[

−
i

~

∫ t

0
dt′w

†
±(t′)Ĥw±(t′)

]

× exp

[

−
i

~

∫ t

0
dt′[w

†
±(t′)(−i~

∂

∂ ~B
)w±(t′)]

d ~B

dt′
dt′

]

,

where the last term gives an analogue of gauge
potential.
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Tetative conclusion so far:

Second quantization

ψ̂(t, ~x) =
∑

n

ĉn(t)vn(t, ~x)

induces a ”hidden local gauge symmetry”

ĉn(t) → e−iαn(t)ĉn(t), vn(t) → eiαn(t)vn(t)

and that this hidden symmetry defines the par-
allel transport and holonomy associated with
geometric phases.
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This approach allows a unified treatment of
all the known geometric phases, either adia-
batic or non-adiabatic, and thus one can ana-
lyze the transitional region from adiabatic to
non-adiabatic phases in a reliable way.

One then recognizes that the topology of the
adiabatic Berry’s phase is actually trivial.
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We have also emphasized the basic difference
between Berry’s phase (topology is approxi-
mate) and Aharonov-Bohm phase (topology
is exact).
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Anomaly (quantum breaking of Noether
theorem): simplest example

L = ψ̄(x)[iγµ(∂µ − ieQAµ) −mU(π)]ψ(x)

+
f2
π

16
Tr∂µU(π)∂µU(π)†

where

U(π) = e2i(1/fπ)γ5π
a(x)T a,

ψ(x) =

(

p(x)
n(x)

)

,
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We now perform a field-dependent unitary
transformation

ψ(x) = V (π)ψ′(x), ψ̄(x) = ψ̄′(x)V (π)

V (π) = e−i(1/fπ)γ5π
a(x)T a.

One then obtains the result
∫

DU(π)Dψ̄Dψ exp{i

∫

d4xL}

=

∫

DU(π)Dψ̄′Dψ′ exp{i

∫

d4x[L′ + LW−Z]}
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where

L′ = ψ̄′(x)[iγµ(∂µ − ieQAµ + V †(π)DµV (π))

−m]ψ′(x)

+
f2
π

16
Tr∂µU(π)∂µU(π)†

with

DµV (π) = ∂µV (π) − ie[QAµ, V (π)]
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The Jacobian (anomaly)

Dψ̄Dψ = JDψ̄′Dψ′,

ln J = i

∫

d4xLWess−Zumino

= i

∫

d4x
1

fπ
π0(x)

e2

32π2
ǫµναβFµνFαβ + ...

where

Fµν = ∂µAν − ∂νAµ,

which correctly describes the decay π0 → γ +
γ.

This gives the simplest example of chiral anomaly.
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Review with references:

K. Fujikawa,” Geometric phases and hidden
gauge symmetry”, Bulletin of Asia-Pacific Cen-
ter for Theoretical Physics (APCTP),23-24 (2009)
29. arXiv:0910.0396 [quant-ph]

43


