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Spontaneously Broken Chiral Symmetry and 
         Nuclear Chiral (Thermo-)Dynamics

Nuclear Equation of State 
   in the context of the QCD Phase Diagram

Astrophysical Constraints from Neutron Stars in Binaries 

QCD interface with Nuclear Physics: 
                   Chiral Effective Field Theory

Density and Temperature Dependence of the Chiral Condensate
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          PHASES and STRUCTURES of QCD1 Prelude:



Phases   and   Symmetry Breaking Pattern 

QCD  Thermodynamics  at zero baryon chemical potential
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SPONTANEOUS  SYMMETRY  BREAKING 
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NAMBU - GOLDSTONE  BOSON: 

Spontaneously Broken  CHIRAL  SYMMETRY
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Figure 1: Vector (a) and axial-vector (b) spectral functions as given by the
parametrization (12,13) and Appendix, compared with ALEPH data [4] (the
comparison with OPAL data [5] looks very similar).

9

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5

s[GeV2]

(a)v1(s)

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

s[GeV2]

(b)

a1(s)

Figure 1: Vector (a) and axial-vector (b) spectral functions as given by the
parametrization (12,13) and Appendix, compared with ALEPH data [4] (the
comparison with OPAL data [5] looks very similar).

9

ρ (JP = 1−)

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5

s[GeV2]

(a)v1(s)

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

s[GeV2]

(b)

a1(s)

Figure 1: Vector (a) and axial-vector (b) spectral functions as given by the
parametrization (12,13) and Appendix, compared with ALEPH data [4] (the
comparison with OPAL data [5] looks very similar).

9

a1 (JP = 1+)

Mmeson − mQ − mq

[GeV]

0

0.2

0.4

0.6

0.8

1.0

1.2

B̄
∗

B̄ D
∗

D

K̄
∗

K̄

ρ

π

bd̄ cd̄ sd̄ ud̄

a1

0

0.5

1.0

m
a
s
s

[G
e
V

]

0
−

1
−

1
+

Goldstone 
Boson

Dipole

Goldstone 
Boson

Axial 
Dipole

Gap

4π fπ

 VECTOR MESONS,   QCD VACUUM  and  
Spontaneous  CHIRAL SYMMETRY  breaking

Current Algebra
Weinberg Sum Rules

m2

ρ = 2g2 f2π

KSFR Relation

ma1
=

√

2mρ = 4π fπ

(g = 2π)

Change of MASS GAP
with varying 

THERMODYNAMIC 
conditions

(density, temperature) ?

Goldstone

Boson

mesons baryons

1

2

+

3

2

+

N
ω

∆

VACUUM condensates 

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5

s[GeV2]

(a)v1(s)

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

s[GeV2]

(b)

a1(s)

Figure 1: Vector (a) and axial-vector (b) spectral functions as given by the
parametrization (12,13) and Appendix, compared with ALEPH data [4] (the
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Low-Temperature Limit:

PION 

Low-energy / low temperature limit of QCD is realized 
as a Chiral Effective Field Theory of (weakly interacting)

Nambu-Goldstone Bosons (PIONS)  



  Interacting systems of 
PIONS  (light / fast)  and  NUCLEONS  (heavy / slow):   

+ + . . .

π πN N

LOW-ENERGY QCD:    Effective  Field  Theory  of 
weakly interacting Nambu-Goldstone Bosons (PIONS) 

+

π π

Leff = Lπ(U, ∂U) + LN (ΨN , U, ...)

U(x) = exp[iτaπa(x)/fπ]

Gasser & Leutwyler            Weinberg            Ecker       . . .   many others

CHIRAL  EFFECTIVE  FIELD  THEORY

Construction of Effective Lagrangian: Symmetries
short

distance
dynamics:

contact terms

representing QCD at scales Q << 4π fπ ∼ 1GeV



small parameter:  

Q

4πfπ

energy / momentum / pion mass

successfully applied to:  

PION-PION scattering 

PION-NUCLEON  scattering 

PION photoproduction and 
COMPTON scattering on the NUCLEON 

long range NUCLEON-NUCLEON interaction 

NUCLEAR MATTER  and  NUCLEI 

Low-Energy Expansion: 
CHIRAL  PERTURBATION  THEORY

1GeV
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Fig. I. Three Regions of Nuclear Potential.*

Region I. Classi.cal region, r*\.irc-t, (r-t is the pion Comp'
ton wave length) where the one-pion-exchange potential domi'
nates and the quantitative behavior of the potential has been
established.

Region II. D.ynamical regi.on, 0.7{L!r{I.5rc-r, where the
two-pion-exchange potential competes with and exceeds the one'
pion-exchange potential. The recoil effect is also appreciable
in this region. The qualitative behavior, however, has been
clarified.

Region III. Phenomenologi.cal region, r10.7rc-r, where exist
so many complicated effects, €.g., the relativistic effect, the isobar
effect, the effect of new particles, etc., that at present we may
have no means but some phenomenological treatment to fit with
experiments.

distance in the unit of the pion Compton wave length,x fi is the inter-nucleon
E-r=L.4x10-13-cm](see p. 35).

π

π

π

NN

N N

N N

 region 1I1
short distance:  unresolved  

Nucleon-Nucleon Interaction M. Taketani, S. Nakamura, M. Sasaki
Prog. Theor. Phys.  6 (1951) 581

 region 1   
long distance: 

one-pion exchange 

region 1I    
intermediate distance: 

two-pion exchange 

M. Taketani,  Suppl. Prog. Theor. Phys. (1956) 

H. Miyazawa et al. (1957)

H. Yukawa (1935)

more than
half a century

 ago . . . 



NUCLEAR  INTERACTIONS  from
CHIRAL  EFFECTIVE  FIELD  THEORY  

 Weinberg                Bedaque & van Kolck             Bernard,  Epelbaum,  Kaiser,  Meißner;  . . . 
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NN Scattering Phase Shifts 
 from CHIRAL  EFFECTIVE  FIELD  THEORY  
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Epelbaum, Glöckle, Meißner,    Nucl. Phys.  A747 (2005) 362

 Entem, Machleidt,     Phys. Rev. C68 (2003) 041001      

quantitatively accurate at same level of precision 
as best phenomenological potentials
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Figure 30: Differential cross section (in mb/sr) and vector analyzing power for elastic nd scattering at
3 MeV (upper panel) 10 MeV (middle panel) and 65 MeV (bottom panel) at NLO (light–shaded bands)
and N2LO (dark–shaded bands) in the SFR framework. The bands correspond to the cut–off variation
as specified in Eq. (4.21). For data see [194].

significantly from the data, the N2LO predictions are in agreement with the data but the uncertainty
due to the cut–off variation is large. A more detailed discussion will be given in [279].

Let us now discuss the nucleon vector analyzing power Ay, which is the most problematic observable in
nd elastic scattering at low energy. This particular observable is underpredicted in the maximum by an
amount of ∼ 25 . . . 30% by modern high–precision nuclear potentials, which is known in the literature as
Ay puzzle [298, 299]. Augmenting the NN potentials with 3NF models such as the TM99’ 3NF [300] or the
Urbana-IX 3NF [301], which are frequently used in modern few–body calculations, does not substantially
improve the description of this observable. The only exception is given by the phenomenological spin–
orbit 3NF introduced by Kievsky [302], which allows to describe the data. Similar discrepancies (but less
pronounced compared to Ay) are also observed for the tensor analyzing power iT11. As demonstrated in
Fig. 30, The NLO result for Ay is in agreement with the data at 3 MeV and even slightly overpredicts
the data at 10 MeV. Very similar results based on the DR NN potential at NLO were obtained in

69

CHIRAL  EFFECTIVE  FIELD  THEORY 
at work in nuclear few-body systems 

example:   elastic  nd  scattering

10 MeV
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Figure 31: Tensor analyzing powers for elastic nd scattering at 10 MeV at NLO (light–shaded bands)
and N2LO (dark–shaded bands). The bands correspond to the cut–off variation as specified in Eq. (4.21).
For data see [194].

[214, 277]. While this looks encouraging, one cannot conclude that the Ay–puzzle has been solved. This
observable is well known to be very sensitive to the spin–orbit 2NF and, therefore, to the triplet P–
waves, see e.g. [278, 285], which need to be reproduced accurately in order to have conclusive results. It
is instructive to look at the spin–orbit phase shift combination ∆LS defined as [278]:

∆LS =
1

12

(

2δ3P0
− 3δ3P1

+ 5δ3P2

)

. (4.24)

In Table 9, we show the results for this quantity at NLO and N2LO compared to the ones from Nijmegen
PWA. Clearly, the spin–orbit force at NLO is enhanced compared to Nijmegen PWA, which also explains
the enhancement for nd Ay at this order. Notice that the overestimation of ∆LS at NLO (and, to a less
extend, also at N2LO) is largely due to the failure to properly describe the 3P2 partial wave, cf. Fig. 26. We
emphasize, however, that the quantity ∆LS is more accurately reproduced at N2LO, where the calculated
nd Ay is in a reasonable agreement with the data (although the uncertainty due to the cut–off variation
appears to be quite sizable). A more detailed discussion including the role of the 3NF will be given in
[279], see also [303] for a related earlier work.

Finally, we emphasize that at low energy the results for nd elastic scattering observables at NLO and
N2LO in both SFR and DR [214] frameworks are very similar. The strongest differences are observed
for Ay and iT11, where the N2LO correction is larger in the DR approach. Very different values of c3,4

adopted in these analyses, which determine the strength of the 2PE 3NF, have only a little impact on the
considered nd elastic scattering observables. At higher energies such as 65 MeV, the differences between
the two sets of calculations, however, become quite significant. For further results in nd elastic scattering
based on the NN potential of Ref. [247] the reader is referred to [278].
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E. Epelbaum:   Prog. Part. Nucl. Phys.  57 (2006) 654
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Explicit DEGREES of FREEDOM∆(1230)

Large spin-isospin polarizability of the nucleon
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Pionic Van der Waals - type intermediate range central potential

N. Kaiser, S. Fritsch,  W. W.,  NPA750 (2005) 259 
N. Kaiser, S. Gerstendörfer,  W. W. ,  NPA637 (1998) 395

Vc(r) = −

9g2
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32π2 f2
π
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e−2mπr
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P(mπr)

C. Ordonez, L. Ray, U. van Kolck,  PRL 72 (1994) 1982

J. Fujita, H. Miyazawa;  Prog. Theor. Phys. 17 (1957) 360 

Pieper, Pandharipande, Wiringa, Carlson,  PRC64 (2001)  014001



 Explicit DEGREES of FREEDOM  (contd.)∆(1230)

Kaiser et al. ,   Ordonez et al. 

Krebs,  Epelbaum,  Meißner  (2007)

Important physics of ∆(1230) promoted to NLO 

Improved convergence 
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... at intermediate and long distance

N. Kaiser, S. Gerstendörfer, W.W.: Nucl. Phys. A 637 (1998) 395



 NN  POTENTIAL  from  LATTICE  QCD

  Reconstruct potential 
from wave function:

quenched  QCD

N. Ishii, S. Aoki, T. Hatsuda:  Phys. Rev. Lett. 99 (2007) 022001

N

N

x

y

r

sp
ac

e
time (Euclidean)

φ(r)

Repulsive core
from Lattice QCDVC(r) = E +

∇2φ(r)

2µ φ(r)

  0

100

200

300

400

500

600

0.0 0.5 1.0 1.5 2.0

V
C

(r
) 

[M
e

V
]

r [fm]

-50

  0

 50

100

0.0 0.5 1.0 1.5 2.0

1S03S1
OPEP

mπ = 0.53 GeV

“large” quark/pion masses

  Short
 distance:



t
e
m

p
e
r
a
t
u
r
e

Tc

baryon chemical potential

〈q̄q〉 #= 0

〈qq〉 #= 0

quark − gluon phase

µB1 GeV

nuclear

matter

0.2

T

[GeV] Nf = 2 (q = u,d)

critical point

hadron phase

CSC phase
superconductor

(color)

matter
nuclear

density [fm−3]0.15

baryon chemical potential

0

0

CSC phases

nuclei

NUCLEAR MATTER and QCD PHASES

momentum scale:
Fermi momentum 

?

?

kF ! 1.4 fm
−1

∼ 2mπ

NN distance:  dNN ! 1.8 fm ! 1.3 m
−1

π

Scales in 
nuclear matter:

energy per nucleon:  E/A ! −16 MeV

compression modulus: K = (260 ± 30) MeV∼ 2mπ

4



 

PIONS (and DELTA isobars) as explicit degrees of freedom

  pion exchange processes in presence of filled Fermi sea

π
π

π

+ +   ...  in-medium

   IN-MEDIUM CHIRAL PERTURBATION THEORY

N Nshort-distance dynamics: 

N,∆N N N N

Small 
scales:

2nd order TENSOR force  +  nucleon’s SPIN-ISOSPIN polarizability

kF ∼ 2mπ ∼ M∆ − MN << 4π fπ

contact interactions

N. Kaiser,  S. Fritsch,  W. W.  (2002 - 2005) 

CHIRAL DYNAMICS and the 
NUCLEAR MANY-BODY PROBLEM



 

  Systematic expansion of  ENERGY DENSITY  

powers of Fermi momentum

E(kF)
 Loop expansion in ChPT

[modulo functions fn(kF/mπ)

in
]

i

γ · p − MN + iε
− 2π(γ · p + MN)δ(p2 − M2

N)θ(p0)θ(kF − |&p |)

 In-medium nucleon propagator:

   IN-MEDIUM CHIRAL PERTURBATION THEORY

Nuclear thermodynamics: compute free energy density  
(3-loop order)
N. Kaiser,  S. Fritsch,  W. W. 

 (2002-2004)

in-medium
nucleon propagators
incl. Pauli blocking

 Finite nuclei energy density functional 



Inclusion of chiral πN∆-dynamics

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

! [fm
-3]

-20

-10

0

10

20

30

40

50

E
 [

M
eV

]

Nuclear matter saturation curve Ē(kf ):

essentially an analytical calculation

one single term linear in ρ adjusted

Ē0 = −16MeV

ρ0 = 0.157 fm−3

K = 300MeV (somewhat high)
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eV Real single-particle potential U(p, kf0):

p-dependence of U(p, kf ) improved

effective nucleon mass at Fermi

surface: M∗(kf0) = 0.88MN

Hugenholtz-van-Hove theorem:

Tkin(kf ) + U(kf , kf ) = Ē(kf ) + kf
3

∂Ē
∂kf

severe problem in BHF calculations

N. Kaiser Chiral dynamics of nuclear matter
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NUCLEAR  MATTER

S. Fritsch, N. Kaiser,  W. W. 
 Nucl. Phys.  A 750 (2005) 259  In-medium ChPT  

(π,N,∆)

basically: 
analytic calculation

Input parameter:
single contact term

Output:

Binding & saturation
E0/A = −16MeV , ρ0 = 0.16 fm

−3 , K = 290MeV

Realistic (complex, momentum dependent) single-particle potential
... satisfying Hugenholtz - van Hove and Luttinger theorems (!)

Asymmetry energy A(k0

F) = 34MeV Landau parameters

 3-loop 
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NUCLEAR  THERMODYNAMICS

π

π

N N

N N

+

Yukawa  
          +  Van der Waals
                                      +  Pauli 

contact terms 

Liquid - Gas  Transition  at
Critical Temperature T  = 15 MeVc

c

S. Fritsch,  N. Kaiser,  W. W. :  Nucl. Phys.  A 750 (2005) 259

(empirical:   T  = 16 - 18 MeV)

baryon density

pressure

nuclear matter: equation of state

V(r) ∼ −

e−2mπr

r6
P(mπr)

 NUCLEAR 
CHIRAL (PION) DYNAMICS

N,∆

BINDING & SATURATION: 3-loop 
in-medium 

ChEFT

+ 3-body
forces
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PHASE  DIAGRAM  of  NUCLEAR MATTER

In-medium 
chiral effective field theory
(3-loop in the free energy density)

Pion-nucleon dynamics 
incl. delta isobars

Short-distance 
NN contact terms

Three-body forces

S. Fritsch,  N. Kaiser,  W. W. :  NPA 750 (2005) 259

S. Fiorilla,  N. Kaiser,  W. W.  (2010)
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Phase diagram of nuclear matter: summary

T − ρ diagram
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“Last” critical point:
ρC " 0.0316 fm−3.

Salvatore Fiorilla, Norbert Kaiser, Wolfram Weise Chiral dynamics and phase diagram of nuclear matter
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PHASE  DIAGRAM  of  NUCLEAR MATTER

Trajectory of  CRITICAL POINT for asymmetric matter

. . . determined almost entirely by isospin dependent 
pion exchange dynamics

S. Fiorilla,  
N. Kaiser,  

W. W. 
(2010)

N/A = 0.5



7. Nuclei in the Universe 133

stable nuclei
known masses up to ‘95
mass measurement s ‘95 - ’00
mass measurement s ‘02
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unknown masses T > 1s
unknown masses T < 1s
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Figure 7.6: The current knowledge of nuclear masses. Preliminary results obtained on-line from the frag-
mentation or from the fission of a 238U beam are shown in yellow color. (Courtesy of Y. Litivinov)

significant impact on the r-process abundance
pattern at the low-A wing of the peaks. Its firm
verification, however, needs further experimen-
tal study of the r-process progenitor nuclei in
the vicinity of the shell closure. In particular,
major developments have to be started to pro-
duce and study the refractory elements (Mo to
Pd) around N=82.

There are currently no data available for r-
process nuclei in the region of the N=126 shell
closure, which is associated with the third r-
process peak at around A ∼ 195. This is likely
to change, when this region can be reached by
the high-energy fragmentation of Pb or U beams
at GSI. These key experiments will then open
a new era in nuclear structure and r-process re-
search, in particular delivering the first measure-
ments of halflives for N = 126 waiting points.
Beyond N = 126, the r-process path reaches re-
gions where nuclei start to fission, demanding
an improved knowledge of fission barriers in ex-
tremely neutron-rich nuclei to determine where
fission terminates the neutron capture flow and
prevents the synthesis of superheavy elements
with Z>92. If the duration time of the r-process

is sufficiently long (as it could be found in neu-
tron star mergers), the fission products can cap-
ture again neutrons, ultimately initiating “fis-
sion cycling” which can exhaust the r-process
matter below A = 130 and produce heavy nu-
clei in the fission region. Fission can in partic-
ular influence the r-process abundances of Th
and U. This would change the Th/U r-process
production ratio with strong consequences for
the age determination of our galaxy, which has
recently been derived from the observation of
these r-nuclides in old halo stars.

The direct measurement of neutron-capture
cross sections on unstable nuclei is techni-
cally not feasible. This goal can, however,
be achieved indirectly by high resolution (d,p)-
reaction, which are considered the key tool to
study neutron capture cross sections of rare iso-
topes at radioactive nuclear beam facilities. For
r-process nuclides, particular technical advance-
ments need to be made to produce the required
beams of a few MeV/nucleon. Studies of beta
delayed-neutron decays can help to determine
the existence of isolated resonances above the
neutron-emission threshold in the daughter nu-

Z

N

... from  QCD
 via 

CHIRAL EFFECTIVE 
   FIELD THEORY ...

... to the
NUCLEAR  CHART  ?

5
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 NUCLEAR MANY-BODY CALCULATIONS

... using NN and NNN interactions from Chiral Effective Field Theory

systematic improvements with inclusion of 3-body interactions 



 DENSITY  FUNCTIONAL  STRATEGIES

: 

: 

strong  SCALAR  and  VECTOR  mean fields   

E[ρ] = Ekin +

∫
d

3
x [E(0)(ρ) + Eexc(ρ)] + Ecoul

Eexc(ρ)

E
(0)(ρ)

...  constrained by (chiral) symmetry breaking pattern of 
Low-Energy QCD

leading order IN-MEDIUM changes of QCD CONDENSATES 

Hartree mean field(s) from contact terms

ρ → ρ(x) Kohn - Sham equations

from in-medium  Chiral  Perturbation Theory  
(”Pionic fluctuations”)

(equiv. to)



Examples (part I)

  deviations (in %) between 
calculated and measured 
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Strategy :  

Fix short distance constants (contact interactions) e.g. in Pb region

  binding energies 
  per nucleon ... 

... and charge radii

Calculate physics at long and intermediate distances using 
nuclear chiral effective field theory

Predict systematics for all other nuclei  

P. Finelli, N. Kaiser, D. Vretenar,  W. W. :  
Nucl. Phys.  A770 (2006) 1
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Examples (part II)

48charge density of   Ca  

P. Finelli, N. Kaiser, D. Vretenar,  W. W. :  Nucl. Phys.  A735 (2004) 449,  A770 (2006) 1
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Examples (part III):                         DEFORMED NUCLEI  

deviations (in %) between 
calculated and measured binding energies 
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P. Finelli et al.,  Nucl. Phys.  A770 (2006) 1

 Ground state deformations

Systematics through isotopic chains
governed by

 isospin dependent forces 
from  chiral pion dynamics

π
π

π

+

N N N N

TENSOR  force



. . . more  applications

Gamow-Teller beta decays   

interesting 
case: 
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anomalously long lifetime (5739 y) 
enables radiocarbon dating

Theoretically not understood on the basis of two-nucleon interactions only

Solution:  chiral effective interaction including three-body force
J.W. Holt, N. Kaiser,  W. W. :  Phys. Rev. C79 (2009) 054331,  Phys. Rev. C81 (2010) 024002 

Spin-orbit interactions   

Role of 2nd order tensor force from pion exchange 
and three-body interactions

In-medium Chiral SU(3) dynamics and hypernuclei   

N. Kaiser:  Phys. Rev. C68 (2003) 054001;  N. Kaiser and  W. W. : Nucl. Phys.  A804 (2008) 60 

N. Kaiser,  W. W. : Phys. Rev. C71 (2005) 015203 
P. Finelli, N. Kaiser, D. Vretenar,  W. W. : Phys. Lett.  B658 (2007) 90;  Nucl. Phys.  A831 (2009) 163 

Weak    -nuclear spin-orbit couplingΛ
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Anomalously long beta decay lifetime of 14C

J.W. Holt, N. Kaiser,  W. W. :  Phys. Rev. C79 (2009) 054331,  Phys. Rev. C81 (2010) 024002 

Early history: B. Janovici, I. Talmi :  Phys. Rev. 95 (1954) 289 (Role of tensor force)



CHIRAL  CONDENSATE  at finite  DENSITY 

〈q̄q〉ρ
〈q̄q〉0

= 1 −
ρ

f2π

[

σN

m2
π

(

1 −
3p2

F

10M2
N

+ . . .

)

+
∂

∂m2
π

(

Eint(pF)

A

)]

(free) Fermi gas
of nucleons

nuclear interactions
(dependence 
on pion mass)

mq

∂MN

∂mq

sigma term π

πN N

(T = 0)

  in-medium
chiral

effective
field theory

6

Hellmann - Feynman theorem:   〈Ψ|q̄q|Ψ〉 = 〈Ψ|
∂HQCD

∂mq

|Ψ〉 =
∂E(mq; ρ)

∂mq
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CHIRAL  CONDENSATE:   DENSITY  DEPENDENCE

Substantial change of symmetry breaking scenario
between chiral limit mq = 0 and physical quark mass mq ∼ 5MeV

Nuclear Physics would be very different in the chiral limit !

constrained by 
realistic nuclear

equation of state

Symmetric Nuclear Matter

In-medium
Chiral

Effective
Field Theory

(Fermi gas)
N. Kaiser,  Ph. de Homont,  W. W.
Phys. Rev. C 77 (2008) 025204 

(NLO  3-loop) 



CHIRAL  CONDENSATE:   
DENSITY  and  TEMPERATURE DEPENDENCE

constrained by 
realistic nuclear

equation of state

In-medium
Chiral

Effective
Field Theory

(NLO  3-loop) 

!"#$

!"#%

!"#&

!"#'

!"#(

!"#)

!"#*

!+

!" !"#"& !"#+ !"#+& !"#, !"#,&

-
.
/
0
1
/
2
3
41
!5
3
46
.

!!789
!$
:

;1<45./!853-46./!=!"#&

>!=!"!?1@
>!=!,"!?1@
>!=!&"!?1@
>!=!+""!?1@

T = 0

20

50

〈q̄q〉ρ,T

〈q̄q〉0

symmetric 
nuclear matter

N = Z

T = 100 MeV

S. Fiorilla, N. Kaiser,  W. W.
(2010) - preliminary 

No indication of first order chiral phase transition in the range 
ρ ≤ 2ρ0, T ≤ 100 MeV

〈Ψ|q̄q|Ψ〉ρ,T =
∂F(mq; ρ,T)

∂mq

Free energy density 
F(mq; ρ,T)



CHIRAL  CONDENSATE:   DENSITY  DEPENDENCE

Qualitative difference between nuclear and neutron matter
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π
=135MeV

chiral in-medium
dynamics

leading order

〈ψ̄ψ〉(ρn)

〈ψ̄ψ〉(ρn = 0)

Neutron Matter

N. Kaiser,  W. W.  
Phys. Lett. B671 (2009) 25

Important: realistic treatment of two-body and 
three-body correlations in extrapolations to high-density matter

T = 0

neutron star 
territory

Chiral limit: logarithmic singularity as mπ → 0



S(ψ, ψ†, φ) =

∫ β=1/T

0

∫

V

d
3
x

[

ψ†∂τ ψ + H(ψ, ψ†, φ)
]

−
T

V
U(φ,T)

Synthesis 
Ratti,  Thaler,  Weise (2005)

POLYAKOV  LOOP  dynamics Confinement 

NAMBU & JONA-LASINIO 
model 

  Chiral Symmetry 

Action :

dτ

V

T

quarks as quasiparticles with dynamically generated masses

Polyakov loop
effective potential

Fermion (quark)
effective Hamiltonian

identify leading collective degrees of freedom  
                                                               (     order parameters)

PNJL  MODEL

Nambu, Jona-Lasinio (1961) 

Fukushima (2004)

Spontaneous

Breaking

Modelling the QCD PHASE DIAGRAM7



1st order chiral

Polyakov loop
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PHASE DIAGRAM  (contd.)

Non-local 3-flavour PNJL model calculation

   “wrong” degrees of freedom  
                  at low temperature,  non-zero baryon density ?

see also:
L. McLerran,
R. Pisarsky

T. Hell, S. Rössner,  
M. Cristoforetti, W. W.  
Phys. Rev.  D81 (2010) 

074034

(SB χ Sym)

1st order transition line ?



QCD Critical Points
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Crossover
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2-nd?

The location and the existence

of the critical points strongly

depend on m
s

and UA(1)

Existence and location 
of critical point(s)

crucially dependent on 
AXIAL U(1) ANOMALY

K. Fukushima (09)

PHASE  DIAGRAM   (contd.)

Issues:  Critical Point(s)

M. Tachibana, N. Yamamoto, T. Hatsuda, G. Baym (2006-09)

Diquarks and Color Super Conducting Phases



T [MeV]

5

50

120

140

165 155

PHASE  DIAGRAM   (contd.)
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PNJL model calculations      

Quarks cannot be the relevant active quasiparticles at 
low temperatures and baryon chemical potentials       

nuclear
territory

N. Bratovich,  T. Hell,  W.W. (2010)

µB ∼ 1 GeV
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PHASE  DIAGRAM   (contd.)

Major challenge: design QCD phase diagram in accordance with
known realistic constraints from hadronic and nuclear physics 
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during thermonuclear bursts from X-ray binaries have en-
abled the tightest measurements of the radii and masses
of neutron stars to date [3]. The long-term monitoring
of burst sources with the Rossi X-ray Timing Explorer,
with its excellent photon statistics, has resulted in a large
(> 1000) database of bursts [20], from which systematic
uncertainties can be determined and controlled, and ideal
sources that act as standard candles can be identified.
High resolution X-ray spectroscopy with the Chandra X-
ray Observatory and XMM-Newton has led to a detailed
measurement of the soft X-ray spectra of bursters and re-
duced the uncertainties introduced by interstellar extinc-
tion [21]. Finally, pointed optical/infrared observations
with the Hubble Space Telescope and large ground-based
facilities (such as the Magellan telescope) have substan-
tially improved distance measurements to these sources
(see Ref. [3] and references therein).
The wealth of such high quality data allows us to em-

ploy a novel approach, combining different spectroscopic
measurements to break the degeneracies between neutron
star masses and radii inherent to each observable [22].
The first observable is the apparent surface area during
the cooling phase of the bursts,

A =
R2

D2f4
c

(

1−
2GM

Rc2

)−1

, (1)

where M and R are the neutron star mass and radius, D
is the distance to the source, and fc is a calculated ratio
between the spectral (color) and effective temperature,
T , of the emerging radiation that accounts for the non-
Planckian spectrum of the burst. Because the emitted
luminosity is ∝ T 4, the apparent surface area in Eq. (1)
shows the same T dependence, which is absorbed into
the definition of fc. The apparent surface area remains
constant in time and is highly reproducible in multiple
events from the same source, indicating that the entire
neutron star surface, rather than a variable area on the
surface, participates in the burst emission.
The second phenomenon occurs in a subset of bursts,

when the flux becomes so high that it exceeds the local
Eddington limit and lifts the photosphere of the neutron
star. The flux achieved during these events is also highly
reproducible for a large number of sources including the
three discussed below, and is related to the neutron star
mass and radius through

FEdd =
GMc

kesD2

(

1−
2GM

Rc2

)1/2

, (2)

where kes is the electron scattering opacity in the stel-
lar atmosphere. Combining the measurements of A and
F with the distance D to each source, we obtain tight,
uncorrelated constraints on the masses and radii of neu-
tron stars. We have applied this technique to three
sources, the neutron stars in the binaries 4U1608−248,
EXO 1745−248, and 4U1820−30, and show in Fig. 1
the 1-σ confidence contours of their masses and radii de-
terminations [3]. For each of the sources, the probabil-
ity density falls off sharply; the 2- and 3-σ contours are

FIG. 1: The 1-σ confidence contours for the masses and radii
of three neutron stars in the binaries 4U 1608−248 (green),
EXO 1745−248 (magenta), and 4U 1820−30 (blue), compared
with predictions of representative equations of state (see text
for details). The details of the measurements are described in
Refs. [3]. The diagonal lines are the black-hole event horizon
(solid) and Buchdahl (dashed) [23] limits.

very similar but are not shown for simplicity. While the
masses of radio pulsars have been determined dynami-
cally to high accuracy [24], the results in Fig. 1 represent
the first uncorrelated measurements of neutron star radii.
The mass and radius measurements in Fig. 1 incorpo-

rate the corrections and systematic uncertainties asso-
ciated with the modeling of emission from the hot sur-
faces of neutron stars following a thermonuclear burst,
the composition of the neutron star surface, as well as
statistical or systematic uncertainties in the distances to
the binaries. In all three measurements, uncertainties
arising from subtraction of the background flux are neg-
ligible, because in each source, the luminosity from the
neutron star surface outshines accretion luminosity by
more than a factor of ten. We converted the probability
densities over the measured fluxes, apparent areas, and
distances to those over the neutron star mass and radius
following standard Bayesian statistics [3]. This is impor-
tant because not every combination of observables leads
to a solution for mass and radius. As a result, the uncer-
tainties in the mass and radius, of order 10%, are smaller
than those of the measurements.
As noted, three distinct measurements of neutron star

masses and radii allow us to infer a piecewise equation
of state of matter at supranuclear densities [18]. Explic-
itly, we follow the procedure in Ref. [18] to convert these
measurements to probability densities over the pressures
of neutron star matter at three fiducial baryon densities
ρ1 = 1.85ρns, ρ2 = 3.7ρns, and ρ3 = 7.4ρns. We do not
assume 1-σ errors in calculating the pressures, but rather
include the full information of the probability densities

Black Hole
Horizon

Oulook:  New Constraints from 
NEUTRON STARS in BINARIES

F. Özel, G. Baym, T. Güver
arXiv:1002.3153

[astro-ph.HE] 

. . . using additional information from observables such as 
    apparent surface and flux during cooling phase of burst

techniques now applied 
to three neutron stars

in binaries

4U 1608-248
EXO 1745-248

4U 1820-30 
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FIG. 2: The pressure of cold matter at (top) 7.4 and 3.7 ρns
and (bottom) 1.85 and 3.7 ρns.

for all three sources. We supplement this procedure with
the requirement of causality, rejecting combinations of
pressures with sound speed is larger than the speed of
light [18]. Figure 2 shows the confidence contours of dif-
ferent pairs of pressures (integrated over the third pres-
sure).

The pressure at 1.85ρns ≡ ρ1 is only weakly con-
strained because such low densities are important only
in determining the macroscopic properties of neutron
stars with masses smaller than those in our measured
sample [18]. In contrast, the pressures at 3.7ρns ≡ ρ2
and 7.4ρns ≡ ρ3 are constrained to within a factor of
100.2 − 100.4.

In detail, we describe these data with a phenomenolog-
ical equation of state that is a piecewise polytrope above
a density ρ0 = 2×1014 g cm−3. Between densities ρ0 and
ρ4 we fit the energy density in the interval ρi−1 < ρ ≤ ρi
as ε = αiρ + βiρΓi , from which we derive the pressure,
P = ρ2∂(ε/ρ)/∂ρ = (Γi − 1)βiρΓi . Since the TOV equa-
tion relates ε and P to the mass and radius of the star,
one only can determine the baryon density ρ from ε and
P data to within a scale factor; to determine the scale we
connect our fit to the tabulated low density SLy equation
of state [25]. For ρi−1 < ρ ≤ ρi, the effective polytropic

TABLE I:

Measured pressures at three supranuclear densities in
MeV fm−3, together with P0 taken from the low density

equation of state SLy [25].

log P0(0.74ρns) log P1(1.85ρns) log P2(3.7ρns) log P3(7.4ρns)
0 [0.3–1.3] 1.6+0.3

−0.1 2.7+0.1
−0.1

FIG. 3: Pressure vs. baryon density at the three points, P1,
P2, and P3, together with the fitted equation of state (3). The
shaded region shows the uncertainties in the determination.

index is Γi ≡ log(Pi/Pi−1)/ log(ρi/ρi−1), the pressure is

P = Pi

(

ρ

ρi

)Γi

, (3)

and in the expression for the energy density

αi =
εi−1

ρi−1

−
Pi

(Γi − 1)ρi−1

(

ρi−1

ρi

)Γi

. (4)

The fitting parameters are shown in Table 1. For ρ > ρ3,
we extrapolate the last polytropic relation.
The data present a clear challenge to microscopic nu-

clear calculations. Figures 2 and 3 compare the best
fit values of the pressures at the three fiducial densities
with those predicted by a representative sample of equa-
tions of state based on a wide range of input physics
and computational methods, from nucleonic: variational
chain summation with the AV18 potential, UIX three-
body potential plus relativistic boost corrections AP4
[8]; Dirac-Brueckner-Hartree-Fock MPA1 [15]; and rel-
ativistic mean fields MS1 [14], plus kaons GS1 [13]; to
u,d,s quark matter SQM1 [15]. Our measurements are
clearly able to discriminate between different predictions,
and indicate that the equations of state based on nucle-
ons alone, APR, MP1 and MS1, are too stiff at higher

.

.
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Kaon Condensate or Quark Matter
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Summary and Conclusions 

Interface of Low-Energy QCD and Nuclear Physics: 
Nuclear Chiral (Thermo-) Dynamics really works !

Importance of Two-Pion Exchange in-medium processes in 
combination with Pauli principle 

Three-Nucleon Forces are natural part of nuclear chiral dynamics

Magnitude of Chiral Condensate remains non-zero in the range

important stabilizer of nuclear matter at higher density

ρ ≤ 2ρ0, T ≤ 100 MeV

corridor of Spontaneous Chiral Symmetry Breaking
persists along baryon density axis
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