Seminar at Nishina Center 2012. 6. 25

J-PARCでの ハイパー核物理の展開

Prospect of Hypernuclear Physics at J-PARC

Dept. of Physics, Tohoku University H. Tamura

Contents

- 1. Introduction -- Role of J-PARC
- 2. Baryon-baryon interactions
 - 2.1 Λ hypernuclei and ΛN interaction
 - **2.2** Σ -nuclear systems and Σ N interactions
 - **2.3** $\Lambda\Lambda$ and Ξ hypernuclei and $\Lambda\Lambda$, ΞN interactions
- 3. How to approach nuclear matter in neutron stars
- (4. Other subjects:
 - 4.1 Impurity nuclear physics
 - 4.2 Baryon's properties and behavior in nuclei)
- 5. Summary

1. Introduction

J-PARC connects

Elementary Particle Physics and Science of Matter

Origin of nuclear force

Nuclear force: the starting point of "physics of matter"

Force between white (neutral) composite particles = complicated as molecular force <u>Short range parts</u> not understood yet

- Repulsive core => stability of nucleus
- Spin-orbit force => magic numbers -> Abundance of elements

Meson exchange picture does not work. Quark-gluon picture works well?

s quark gives a clue ! Hyperon forces are very different? The miracle balance between attraction and repulsion in NN force is universal?

Extend nuclear force into u,d,s world and achieve unified understanding of baryon-baryon forces

Nuclear force $(SU_f(2))$

Baryon Baryon interaction by Lattice QCD

• 6 independent forces in flavor SU(3) symmetry

Slide by Koji Miwa

Prog. Theor. Phys. 124 (2010) 4

World of matter made of u, d, s quarks

Motoba-Bando's diagram (designed by M. Kaneta)

Hyperon mixing in neutron stars

Recent hypernuclear data -> realistic calculations possible

High density matter in neutron stars

Earthquake effect to J-PARC

The sandy ground sank down by ~1m.

Re-alignment of all the Main Ring and beam line magnets were necessary.

The beam came back in December, only 9 months after the disaster.

Roads, power/water stations, and pipes/cables to the accelerator facilities were heavily damaged.

Underground water flew into LINAC.

J-PARC Hadron Hall: re-aligned

J-PARC Hadron Hall and nuclear/hadron physics

2. Baryon-baryon interactions

2.1 Λ hypernuclei and ΛN force

Previous (\pi^+, K⁺) data and \Lambda N interaction

π⁻ p p -> Λ n K⁺

2-step charge exchange $(\pi^{-}p \rightarrow \pi^{0}n, \pi^{0}p \rightarrow K^{+}\Lambda \text{ etc.})$ Via Σ^{-} admixture in Λ hyp. $(\pi^{-}p \rightarrow \Sigma^{-}K^{+}, \Sigma^{-}p < ->\Lambda n)$

Physics Interest

Λ-Σ coherent coupling
-> ΛNN attraction

Coherently enhanced in large isospin environment -> important in neutron stars

- Cross section sensitive to Σ⁻ admixture in Λ hyp.
- In halo disappear by Λ ?

How to extend S=-1 nuclear chart?

Hypernuclear γ-ray data

Hypernuclear γ-ray data

Ge detctor array: Hyperball

Constructed by Tohoku/ KEK/ Kyoto in 1998

- Large acceptance for small hypernuclear γ yields
 Ge (r.e. 60%) x 14
 Ω ~ 15%, ε ~ 3% at 1 MeV
- High-rate electronics for huge background
- BGO counters for π⁰ and Compton suppression

Ge detctor array: Hyperball

Upgraded to Hyperball2 in Tohoku (2005~) Efficiency 2.4% -> ~4%

<u>AN spin-dependent interactions</u>

Low-lying levels of A hypernuclei

 γ -ray data => Δ = 0.33 (0.43 for A=7), S_A = -0.01, S_N = -0.4, T= 0.03 [MeV] Small spin-dependent forces have been established.

Observation of "Hypernuclear Fine Structure"

BNL E930 (AGS D6 line + Hyperball)

consistent with Quark Cluster Model

consistent with Meson Exch. Model

D.J. Millener, J.Phys.Conf.Ser. 312 (2011) 022005

Nijmegen meson-exchange models

	I Via G	G-matrix calo				
	•	Δ	S _A	S _N	Τ	(MeV)
	ND	-0.048	-0.131	-0.264	0.018	
Feedback to	NF	0.072	-0.175	-0.266	0.033	
VN interaction	NSC89	1.052	-0.173	-0.292	0.036	
	NSC97f	0.421	-0.149	-0.238	0.055	
models	ESC04a	0.381	-0.108	-0.236	0.013	
	ESC08a	0.146	-0.074	-0.241	0.055	
	("Quark"		0.0	-0.4)	
	Stren	igth equivale	nt to quark	-model LS	force by Fuj	wara et al.
spin-spin:	Exp.	0.4	-0.01	-0.4	0.03	

 $\Delta = 0.33$ --0.43 MeV => NSC97f selected (consistent with ${}^{4}_{\Lambda}H(1^{+},0^{+})$)

spin-orbit:

 $S_A = -0.01 MeV$

$$S_N = -0.4 \, MeV$$

(SLS-ALS)

tensor:

T = 0.03 MeV

All Nijmegen models fail. Quark model looks OK.

 ${}^{9}_{\Lambda}$ Be = ααΛ model Hiyama et al., PRL 85 (2000) 270 Fujiwara et al. Prog.Part.Nucl.Phys.58 (2007) 439.

=> Nijmegen models OK

Reproduction of hypernuclear level energies

	Millener's parameter set J-PARC E13								
	A=	~ 9 <u>∧</u> =	= 0.430	$S_{\Lambda} = -0.0$	15 S_N	= -0.390	T = 0.	030 MoV	
	A=10	0~16 <u>∆</u> =	: 0.330 🖇	$S_{\Lambda} = -0.0$	$15 S_N$	= -0.350	T = 0.0)239 .	
Calculated from G-matrix using $\Lambda N - \Sigma N$ force in NSC97f									
dou	blet spa	acing	│	ribution	keV				
	J_u^{π}	J_l^{π}	$\Lambda\Sigma$	Δ	S_{Λ}	S_N	T	ΔE^{th}	ΔE^{exp}
7Li	$3/2^{+}$	$1/2^{+}$	72	628	-1	-4	-9	693	692
7 Li	$7/2^{+}$	$5/2^{+}$	74	557	-32	-8	-71	494	471
⁸ Li	2^{-}	1-	151	396	-14	-16	-24	450	(442)
⁹ _A Li	$5/2^{+}$	$3/2^{+}$	116	530	-17	-18	-1	589	
⁹ _A Li	$3/2^+_2$	$1/2^+$	-80	231	-13	-13	-93	-9	
${}^{9}_{\Lambda}\mathrm{Be}$	$3/2^{+}$	$5/2^{+}$	-8	-14	37	0	28	44	43
$^{10}_{\Lambda}B$	2^{-}	1^{-}	-15	188	-21	-3	-26	120	< 100
¹ B	$7/2^{+}$	$5/2^{+}$	56	339	-37	-10	-80	267	264
ıїв	$3/2^{+}$	$1/2^+$	61	424	-3	-44	-10	475	505
$^{12}_{\Lambda}C$	2-	1-	61	175	-12	-13	-42	153	161
$^{15}_{\Lambda}N$	$1/2^+_1$	$3/2^+_1$	44	244	34	-8	-214	99	
$^{15}_{\Lambda}N$	$3/2^{+}_{2}$	$1/2^{+}_{2}$	65	451	$^{-2}$	-16	-10	507	481
$^{16}_{\Lambda}O$	1-	0-	-33	-123	-20	1	188	23	26
$^{16}_{\Lambda}O$	2^{-}	1^{-}_{2}	92	207	-21	1	-41	248	224

D.J. Millener, J.Phys.Conf.Ser. 312 (2011) 022005

Re Can we derive the effect of ΣN - ΛN coupling force?									
—> А=7~9	- -> NSC97f looks good, but we need more data.								
A=10~16	$\Delta = 0.330$	$S_{\Lambda} = -0.015$ $S_{\Lambda} = -0.015$	$S_N = -0.350$ $S_N = -0.350$	T = 0.030 T = 0.0239) Me	V			

Calculated from G-matrix using $\Lambda N - \Sigma N$ force in NSC97f									
doublet spacing			│ \ cor	ntributior		keV			
	J_u^{π}	J_l^{π}	$\lambda_{\Lambda\Sigma}$	Δ	S_{Λ}	S_N	Т	ΔE^{th}	ΔE^{exp}
7Li	$3/2^{+}$	$1/2^{+}$	72	628	-1	-4	-9	693	692
7Li	$7/2^{+}$	$5/2^{+}$	74	557	-32	-8	-71	494	471
⁸ Li	2^{-}	1-	151	396	-14	-16	-24	450	(442)
⁹ _A Li	$5/2^{+}$	$3/2^{+}$	116	530	-17	-18	-1	589	
⁹ _A Li	$3/2^{+}_{2}$	$1/2^+$	-80	231	-13	-13	-93	-9	
${}^{9}_{\Lambda}\text{Be}$	$3/2^{+}$	$5/2^{+}$	-8	-14	37	0	28	44	43
$^{10}_{\Lambda}\text{B}$	2^{-}	1^{-}	-15	188	-21	-3	-26	120	< 100
$^{11}_{\Lambda}B$	$7/2^{+}$	$5/2^{+}$	56	339	-37	-10	-80	267	264
$^{11}_{\Lambda}B$	$3/2^{+}$	$1/2^{+}$	61	424	$^{-3}$	-44	-10	475	505
$^{12}_{\Lambda}C$	2^{-}	1-	61	175	-12	-13	-42	153	161
$^{15}_{\Lambda}N$	$1/2^+_1$	$3/2^+_1$	44	244	34	-8	-214	99	
${}^{15}_{\Lambda}N$	$3/2^{+}_{2}$	$1/2^+_2$	65	451	-2	-16	-10	507	481
$^{16}_{\Lambda}O$	1-	0-	-33	-123	-20	1	188	23	26
$^{16}_{\Lambda}O$	2^{-}	1_{2}^{-}	92	207	-21	1	-41	248	224

D.J. Millener, J.Phys.Conf.Ser. 312 (2011) 022005

2.2 Σ -nuclear systems and Σ N force

The only Σ -nuclear bound state so far observed

No Σ bound states observed in other (heavier) Σ hypernuclei How about spin-isospin averaged pot.? Σ in neutron stars?

<u>Σ--28Si Nuclear potential (KEK E438)</u>

2.3 $\Lambda\Lambda$, Ξ hypernuclei and $\Lambda\Lambda$, ΞN forces

<u>ΛΛ hypernuclei via</u>

Slide by Nakazawa

emulsion+counter hybrid method (KEK E373)

<u>ΛΛ interaction strength</u>

Theoretical prediction and J-PARC experiment

~10 times more $\Lambda\Lambda$ hypernuclear events (10² evens) at J-PARC (E07) => • Precise data for $\Lambda\Lambda$ interaction w/o nuclear effect

• $\Lambda\Lambda$ -> Σ N decay to search for $\Lambda\Lambda$ correlation in a nucleus

Summary for the YN, YY interactions

Established Suggested Unknown ΔΝ Attractive (~ 2/3 of NN force) < $_{\Lambda}Z$ Λ -single particle orbit data Very small LS force, small spin-spin/ tensor forces <- $_{\Lambda}Z$ p-shell γ -ray data etc. $\Lambda N - \Sigma N$ coupling force <- s-shell Λ hypernuclei p-wave force? Charge symmetry breaking ($\Lambda p \overline{\Lambda} n$)?? ΣΝ ⁺_ΣHe Strong isospin dependence (attractive for T=3/2,S=0 and T=1/2,S=1) Strongly repulsive in average <- ²⁸Si (π^- ,K⁺) spectrum How large is the repulsive (T=3/2,S=1) channel?

<- ⁶_{^^}He

ΛΛ

Weakly attractive $\Lambda\Lambda$ -EN- $\Sigma\Sigma$ coupling force ???

ΞN

Weakly attractive?? Isospin dependence???

 $\Lambda\Sigma$, $\Sigma\Sigma$, $\Xi\Lambda$, $\Xi\Sigma$, $\Xi\Xi$; ΩN

<- ¹²C (K⁻,K⁺) spectrum

Unknown at all ???

J-PARC

will answer

3 How to approach nuclear matter in neutron stars

Neutron Star Matter

- Final form of matter in matter evolution in the universe Supernova explosion, Many samples as X-ray pulsars
- Highest density matter in the universe
 - Mass = $1 \sim 2 M_{\odot}$, R~ 10 km? (no direct observation)
 - => ρ (center) = 3~10 ρ_0

Various forms of matter made of quarks

Joint research to reveal neutron star matter

Equation of state (EOS) for nuclear matter

Why experiment-observation joint research?

How to determine EOS from experiments

Inner crust, outer core(ρ < 2ρ₀)</p>

■ <u>Inner core (ρ > 2ρ₀)</u>

How EOS changes when going to neutron richer matter?

How much and which hyperons appear?

B-B interactions of multi-strange systems

Determine hyperon mixing in centeral region ($\rho > 3\rho_0$)-> EOS

Strangeness in neutron-rich environment

5. Summary

- J-PARC connects QCD and nuclear physics through studies of BB forces and high density nuclear matter with strangeness
- Study of YN and YY forces via strange nuclear systems enables unified understanding of BB forces including their short rage parts, and then, high density nuclear matter in neutron stars.
- ΛN force has been well studied via (π,K⁺) spectroscopy and γ-spectroscopy. Further study of neutron-rich Λ hypernuclei is necessary for ΛNN force.
- ΣN force looks strongly repulsive probably due to quark Pauli effect. It will be confirmed by a Σp scattering experiment.
- ΛΛ force was found to be weakly attractive. More data necessary to precisely determine the force and investigate ΛΛ correlation/ H resonance.
- **E** Ξ N force will be studied from Ξ hypernuclei via (K⁻, K⁺) reaction.
- Joint research together with neutron-rich nuclei, ultra-cold atoms, X-ray astronomy, and theories will reveal the neutron star matter.
- Impurity effects and baryon properties and behavior in nuclei can be also investigated by strangeness nuclear physics.