Towards the Extremes of the Nuclear Landscape

Walter F. Henning

RIKEN Nishina Center

I. Tanihata et al., Phys. Rev. Lett. 55 (1985) 2676 (LBL Bevelac)

Transmission & Interaction Cross Section Measurement

Stopping & Re-acceleration (ISOL

Μ

RNB Production Facilities

5 next slides:

A. Gade INPC2010

Driving forces for shell evolution in neutron-rich nuclei

 Spin-isospin parts of the NN interaction

T. Otsuka et al., PRL 87, 082502 (2001)

 Particularly the monopole parts of the tensor force

Also T. Otsuka et al., PRL 95, 232502 (2005)

- Central part
- 3N force

play important roles

T. Otsuka et al., PRL 104, 012501 (2010)

T. Otsuka, et al., PRL, in press arXiv:0908.2607

Weak binding:

- Density dependent spin-orbit force
- Coupling to the continuum J. Dobaczewski et al., PPNP 59, 432 (2007)

- Mean field near stability
- Strong spin-orbit term
- Mean field for N >> Z?
- Reduced spin-orbit
- Diffuse density
- Tensor force

Impacts of tensor force

Neutron-rich N=40

- Beta decay to ^{64,66}Fe at CERN/ISOLDE [M. Hannawald et al., PRL 82, 1391 (1999)]
- Beta decay to ⁶⁰⁻⁶³Cr (GANIL) [O. Sorlin *et al.*, EPJ A 16, 55 (2003)]
- Rotational band built on 9/2⁺ in ^{55,57}Cr (ANL) [A. Deacon *et al.*, PLB 622, 151 (2005)]
- Low-lying 9/2⁺ isomer in ⁵⁹Cr (ANL) at 503 keV with possibly oblate deformation [S. J. Freeman et al., PRC 69, 064301 (2005)]
- Large deformation of ⁶²Cr (RIKEN) [N. Aoi *et al.*, J. Phys.: Conf. Ser. 49, 190 (2006), PRL 102, 012502 (2009)]

Collectivity in neutron-rich Cr

- ^{60,62}Cr produced by fragmentation of stable ⁷⁰Zn beam at 63 MeV/u
- Inelastic proton scattering induced by a LH₂ target, γ-ray detected in Nal array DALI2 and scattered Cr in a TOF spectrometer (TOMBEE)
- Deformation length deduced from angle-integrated cross sections, σ(2⁺), in comparison to CC calculations
- Data not described by models without neutron g_{9/2} orbit

N. Aoi et al., PRL 102, 012502 (2009) - RIKEN

Inelastic scattering of ^{62,64,66}Fe and ^{60,62,64}Cr at NSCL

- Gamma-ray spectroscopy of excited states populated in ^{60,62,64}Cr and ^{62,64,66}Fe via inelastic scattering off ⁹Be
- Relative cross section for the population of the 2⁺ state – including observed and unobserved feeding – confirms change in structure between Fe and Cr

Deformation in Co and Ni approaching N=40:

D. Pauwels *et al.*, PRC 78, 041307(R) (2008); PRC 79, 044309 (2009)

⁶² Fe	⁶⁴ Fe	⁶⁶ Fe	⁶⁸ Fe
⁶⁰ Cr	⁶² Cr	⁶⁴ Cr	

Neutron-rich Cr up to ⁶²Cr:

N. Aoi *et al.*, PRL 102, 012502 (2009) S. Zhu *et al.*, PRC 74, 064315 (2006)

Structure of iron up to ⁶⁸Fe:

J. Ljungvall *et al.*, PRC 81, 061301(R) (2010)

P. Adrich *et al.*, PRC 77, 054306 (2008)

S. Lunardi *et al.,* PRC 76, 034303 (2007)

Structure of Mn up to ⁶³Mn:

D. Steppenbeck, *et al.*, PRC 81, 014305 (2010)

H. L. Crawford, *et al.*, PRC 79, 054320 (2009)

J. J. Valiente-Dobón *et al.,* PRC 78, 024302 (2008)

Pygmy in ⁶⁸Ni at 11 MeV

Width \approx 2 MeV mainly due to Doppler Broadening

5 (p/m 1.5) % of the EWSR

 $B(E1) = 1.2 e^{2} fm^{2}$

High resolution γ -spectroscopy at the FRS of GSI

Shape Co-existence and Quantum Phase Transitions

0

Quantum Phase Transitions QPT)

QPT defined for $N \to \infty$

lachello and Zamfir (PRL 92 (2004) 212501) show that main features persist down to N \sim 10

Z.P. Li et al. PRC 80 (2009) 061301 present calculations on observables

ISOLDE: QPT in masses of n-rich Kr isotopes

Potential Energy Surface for ¹⁸⁶Pb

Nuclear astrophysics with RI Beams:

vp process

Fröhlich et al., PRL 96, 142502 (2006).

- The intense neutrino/antineutrino flux in a supernova can strongly influence the formation of elements
- Nuclei that form in the "alpha-rich freezeout" are expected to experience a high anti-neutrino flux

Groundstate Properties of Nuclei: Lasers, Traps, and Storage Rings

What do we learn?

Charge Radii	nuclear structure: nuclear charge distribution,	
	deformation	

Spins,	microscopic nuclear structure: wave functions,
Moments	coupling of nucleons, configuration mixing, shell
	structure
	macroscopic nuclear structure: deformation

Masses	nuclear binding energy		
	basic test of nuclear models		
	nuclear structure: shell closures, pairing, onset of		
	deformation, drip lines, halos		

Mass measurements

Production Methods for Radioactive Beams

In-Flight Reactions

HIE-ISOLDE (CERN)

KoRIA (Korean Rare Isotope Accelerator)

Driver cyclotron (H 70MeV 1mA and D 35MeV 0.1mA) Phase 1 (ISOL to 15MeV/u) / Phase 2 (Linac to 200MeV/u for fragmentation beams)

China Advanced Rare Ion-beam Facility

I. Tanihata, NIM B266 (2008) 4067

Production Methods for Radioactive Beams

Some comments on 2-step RIB Production

Production Methods for Radioactive Beams

In-Flight Reactions

Gas catcher at the ATLAS Canadian Penning Trap

Gas catcher operation at FRIB intensities

• High intensity beamline built at ANL to reproduce ion distribution expected behind RIA/AEBL fragment separator

 Focusing by 68 cm bore superconducting solenoid

• Large gas catcher using large RF cone developed for high energy test at GSI, combined with full body RF focusing

• First tests at high intensity beamline in Sept and Oct 06

• High efficiency obtained at up to 10⁹ incoming particles per second

What species have been extracted so far

Gas catcher should be a "universal" approach ... how diverse are the species that have been extracted so far:

•Neutron-deficient isotopes

•Cs, Xe, Te, Sb, Sn, In, Rh, Ru, Tc, Mo, Se, As, Ge, Ga, As, Zn, Co, Fe, V, Ti, Al, Mg, Na, O, C

Neutron-rich isotopes

•Nd, Ce, Pr, La, Ba, Rh, Ru, Te, Tc, Mo, Sr

•Stable isotopes

•Xe, Kr, Ar, Ne

Essentially all attempted species, from the "easy" (alcali atoms and noble gases) up to the very refractory cases (Mo, Tc, Co, etc ...), have been extracted as singly or doubly charged ions.

All with good efficiency.

Layout for ²⁵²Cf fission source system at ATLAS

SLOWRI 2.0

Extremes of the (nuclear) landscape... Exploring the unknown... Many facets of new physics... RIBF is well positioned for the future...

Thank you for your attention!