理研仁科センター月例コロキウム, November20, 2012

原子にEDMを探す

Experimental search for EDM in a diamagnetic atom ¹²⁹Xe with spin oscillator technique

旭 耕一郎,¹ 市川 雄一,¹ 近森 正敏,¹ 大友祐一,¹ 彦田絵里,¹ 鈴木貴大,¹土屋 真人,¹ 井上壮志,² 吉見 彰洋,³ 古川 武,⁴ 上野 秀樹,⁵ 松尾 由香利,⁵ 福山 武志⁶

¹ 東工大理工、² 東北大CYRIC、³ 岡山大極限量子コア、⁴ 首都大東京理工、 ⁵ 理研仁科センター、⁶立命館大R-GIRO

OUTLINE:

- 1. Why EDM?
- 2. "Optically coupled" spin oscillator
- 3. Present status
- 4. Summary

§1 Why EDM?

 Field theoretically, its interaction is represented by:

$$\mathscr{L}_{\rm EDM} = -\frac{i}{2} d\overline{\psi} \sigma^{\mu\nu} \gamma_{5} \psi F_{\mu\nu}$$

$$\sigma^{\mu\nu} \equiv \frac{\mathbf{i}}{2} [\gamma^{\mu}, \gamma^{\nu}] = \mathbf{i} (\gamma^{\mu} \gamma^{\nu} - g^{\mu\nu})$$

$$F_{\mu\nu} \equiv \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} = \begin{pmatrix} 0 & E^{x} & E^{y} & E^{z} \\ -E^{x} & 0 & B^{z} & -B^{y} \\ -E^{y} & -B^{z} & 0 & B^{x} \\ -E^{z} & B^{y} & -B^{x} & 0 \end{pmatrix}$$

$$\sigma^{\mu\nu} F_{\mu\nu} \gamma_{5} = -2\mathbf{i} \left[E\sigma B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} - \mathbf{i} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right]$$

$$\varphi^{\mu\nu} F_{\mu\nu} \gamma_{5} = -2\mathbf{i} \left[E\sigma B \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \mathbf{i} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right]$$

$$\psi = \sqrt{E + m} \begin{pmatrix} \phi^{s} \\ \frac{\sigma p}{E + m} \phi^{s} \end{pmatrix} \rightarrow \sqrt{2E} \begin{pmatrix} \phi^{s} \\ 0 \end{pmatrix} \qquad (p / m \rightarrow 0)$$

 \therefore $\mathscr{L}_{EDM} \rightarrow -d\sigma E \quad \left(2E\phi^{s\dagger}\phi^{s}\right)$

Transformation property of an EDM

Standard Model (SM)

Predicts EDMs that are undetectably small

-- 10⁻⁵ times the present limits.

Theories beyond the SM allow sizes of EDM to be reachable with "a-step-forward" experiments

Standard Model

Elementary Particles

But ... we know today that

•SM particles share only <u>4.5 %</u> of the Universe's energy content !

73 %

<u>22 %</u>

The rest are

Dark energyDark matter

Big Bang in Cosmology

Standard Model

Elementary Particles

......

Formation of matter in the Universe

Even further,

 CP violation within the SM is too small to explain the predominance of matter over antimatter

•Extra CP violation is needed !

EDM is an exclusively excellent <u>NEW PHYSICS indicator</u>, free from the SM "background"

But ... we know today that

•SM particles share only <u>4.5 %</u> of the Universe's energy content !

The rest are

Dark energy
Dark matter

<u>73 %</u> 22 %

CP violation in the Standard Model

$$V = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{13}} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{13}} & c_{13}c_{23} \end{pmatrix}$$
$$\equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{ud} & V_{us} & V_{ub} \end{pmatrix}$$

component

Minimal Supersymmetric Standard Model (MSSM)

A total of twelve matter particles (six quarks and six leptons), plus the exchange particles that are

●低エネルギー(E < 100 GeV) (我々の世界)ではSUSYは見 掛け上破れている!

Minimal Supersymmetric Standard Model (MSSM)

ー低エネルギーでの現実の粒子 である標準理論の粒子はそれ ぞれ、自分よりずっと重くて現実 には見えない超対称パートナー 粒子の影を引きずりながら存在 する。

From: CERN Webpage

EDM in the Standard Model

Nontrivial charge distribution in the nucleus generates an EDM in atom:

$$\boldsymbol{d}_{\text{atom}} = \left\langle \tilde{0} \middle| \boldsymbol{\hat{D}} \middle| \tilde{0} \right\rangle \qquad \text{where } \boldsymbol{D} = -e \sum_{i} \boldsymbol{R}_{i}, \quad \left| \tilde{0} \right\rangle \approx \left| 0 \right\rangle + \sum_{P} \frac{\left\langle P \middle| - e \varphi_{\text{Schiff}} \middle| 0 \right\rangle}{E_{0} - E_{P}} \left| P \right\rangle$$
$$\approx 2 \sum_{P} \frac{\left\langle 0 \middle| \boldsymbol{\hat{D}} \middle| P \right\rangle \left\langle P \middle| - e \varphi_{\text{Schiff}} \middle| 0 \right\rangle}{E_{0} - E_{P}}$$

 $\varphi_{\text{Schiff}} = 4\pi \hat{S} \cdot \nabla \delta(\boldsymbol{R})$

$$\hat{S} = \frac{1}{10} \left[\int_{\text{nucleus}} \rho(\mathbf{r}) \mathbf{r} \left(r^2 - \frac{5}{3} \left\langle r^2 \right\rangle \right) d^3 \mathbf{r} \right] \qquad \text{Schiff moment}$$

Schiff moment from fundamental sources of CPV

Nuclear structure

 $S = \left\langle \Psi_{\text{Nucl}} \middle| \hat{S} \middle| \Psi_{\text{Nucl}} \right\rangle$ where $\Psi_{\text{Nucl}}(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_A)$ is a solution for the Schroedinger equation $\left[\frac{\mathbf{p}_k^2}{2m} + \sum_{j < k}^A V(\mathbf{r}_j, \mathbf{r}_k) \right] \Psi_{\text{Nucl}}(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_A) = E_0 \Psi_{\text{Nucl}}(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_A)$

If
$$V_{\rm PT} = 0$$
, then $S = 0$

CP-violating effective Lagrangian for the strong interactions of light quarks (up to those of dimension 5):

e.g. [Hisano & Shimizu, PRD70(04)093001]

●Case of ¹⁹⁹Hg

[Flambaum *et al.*, 1986] $S(^{199}\text{Hg}) = -0.086g_{\pi NN}\tilde{g}^{(0)}_{\pi NN} - 0.086g_{\pi NN}\tilde{g}^{(1)}_{\pi NN} + 0.172g_{\pi NN}\tilde{g}^{(2)}_{\pi NN} \ e \text{ fm}^3$

[Dmitriev *et al.*, 2003] $S(^{199}\text{Hg}) = -0.0004 g_{\pi NN} \tilde{g}^{(0)}_{\pi NN} - 0.055 g_{\pi NN} \tilde{g}^{(1)}_{\pi NN} + 0.009 g_{\pi NN} \tilde{g}^{(2)}_{\pi NN} e \text{ fm}^3$

Hartree-Fock-Bogoliubov calc. with SLy4 interaction modified to include CP-odd π -exch. *NN* int.

"The calculations presented here are more sophisticated and inclusive than any yet attempted, but it may very well be that still more sophistication is required."

•Case of ¹²⁹Xe

- Work by Flambaum, Khriplovich, Sushkov, 1985
- New calculation is strongly anticipated !

¹²⁹Xe vs. ¹⁹⁹Hg

Previous calculation [Flambaum, Khriplovich, Sushkov, 1985]

$$d(^{129}\text{Xe}) = 6.7 \times 10^{-26} \,\eta \,e\text{cm}$$

$$d(^{199}\text{Hg}) = 4.0 \times 10^{-25} \,\eta \,e\text{cm} \qquad > 6$$

$$(d_n = -5 \times 10^{-23} \,\eta \,e\text{cm})$$

But,

Case of ¹²⁹Xe (nuclear structure consideration)

A simple-minded g.s. wave function:

$$S = \sum_{i} \frac{\langle g.s. | \hat{S}_{z} | i \rangle \langle i | \hat{V}_{PT} | g.s. \rangle}{E_{g.s.} - E_{i}}$$
$$\hat{S}_{z} \equiv \frac{1}{10} e \left(r_{p}^{2} z_{p} - \frac{5}{3} \langle r^{2} \rangle_{ch} z_{p} \right)$$

¹²⁹Xe (*Z*=54, *N*=75)

● Case of ¹²⁹Xe (nuclear structure consideration)

A simple-minded g.s. wave function:

 $| {}^{129} \text{Xe, } 1/2^{+} \rangle \approx \left| \nu \left(\left(d_{3/2}^{-4} \right)^{0^{+}} \left(h_{11/2}^{-2} \right)^{0^{+}} s_{1/2}^{-1} \right)^{1/2^{+}} \otimes \pi \left(g_{7/2}^{-4} \right)^{0^{+}} \right\rangle^{J=1/2} + \alpha \left| \nu \left(\left(d_{3/2}^{-4} \right)^{0^{+}} \left(h_{11/2}^{-2} \right)^{2^{+}} s_{1/2}^{-1} \right)^{3/2^{+}} \otimes \pi \left(g_{7/2}^{-4} \right)^{2^{+}} \right\rangle^{J=1/2} + (\text{others})$

$$S = \sum_{i} \frac{\langle g.s. | \hat{S}_{z} | i \rangle \langle i | \hat{V}_{PT} | g.s. \rangle}{E_{g.s.} - E_{i}}$$
$$\hat{S}_{z} \equiv \frac{1}{10} e \left(r_{p}^{2} z_{p} - \frac{5}{3} \langle r^{2} \rangle_{ch} z_{p} \right)$$

 Shell-model calculation of the ¹²⁹Xe Schiff moment is presently under way, by N. Yoshinaga and co-workers (Saitama U.)

¹²⁹Xe (*Z*=54, *N*=75)

Natural size of an EDM

<u>d~10⁻²⁷ e.cm という大きさ</u>

Detection of an EDM

 $H = -\mathbf{\mu} \cdot \mathbf{B} - \mathbf{d} \cdot \mathbf{E}$

Setup for the spin oscillator experiment

Production of Polarization

Optical Spin Detection

Transverse polarization of ¹²⁹Xe transfer to Rb : Re-polarization

Spin oscillator

Spin oscillator

$$\frac{\mathrm{d}P_x}{\mathrm{d}t} = -\omega_0 P_y + \alpha P_z P_x - \frac{P_x}{T_2},\tag{1}$$

$$\frac{\mathrm{d}P_{y}}{\mathrm{d}t} = \omega_{0}P_{x} + \alpha P_{z}P_{y} - \frac{P_{y}}{T_{2}}, \qquad (2)$$

$$\frac{\mathrm{d}\boldsymbol{P}_z}{\mathrm{d}\,t} = -\alpha \left(\boldsymbol{P}_x \boldsymbol{P}_x + \boldsymbol{P}_y \boldsymbol{P}_y\right) - \frac{\boldsymbol{P}_z}{T_1} + \left(\boldsymbol{P}_0 - \boldsymbol{P}_z\right) \boldsymbol{G}.$$
 (3)

$$\begin{pmatrix}
B_x \equiv \frac{\alpha}{\gamma} P_y \\
B_y \equiv -\frac{\alpha}{\gamma} P_x \\
\omega_0 \equiv -\gamma B_0
\end{pmatrix}$$

Taking (1) + *i* (2) and setting $P_x(t) + iP_y(t) \equiv e^{i\omega_0 t} \tilde{P}_{\perp}(t)$

$$\frac{\mathrm{d}\tilde{P}_{\perp}}{\mathrm{d}t} = \left(\alpha P_{z} - \frac{1}{T_{2}}\right)\tilde{P}_{\perp}, \qquad (4)$$

$$\frac{\mathrm{d}P_{z}}{\mathrm{d}t} = -\alpha \left|\tilde{P}_{\perp}\right|^{2} - \frac{P_{z}}{T_{1}} + \left(P_{0} - P_{z}\right)G. \qquad (3')$$

<u>The steady state solutions</u> (namely solutions under $\frac{d\tilde{P}_{\perp}}{dt} = 0$ and $\frac{dP_z}{dt} = 0$)

Trivial solution:

$$\tilde{P}_{\perp}^{eq} = 0, \quad P_{z}^{eq} = \frac{GT_{1}}{GT_{1}+1}P_{0}$$

•Non-trivial solution:

$$\left|\tilde{P}_{\perp}\right|^{\text{eq}} = \sqrt{\frac{G}{\alpha} \left(P_0 - \frac{1+1/GT_1}{\alpha T_2}\right)}, \quad P_z^{\text{eq}} = \frac{1}{\alpha T_2}.$$

(Natural) spin maser

[T.E. Chupp *et al*, *Phys. Rev. Lett.* **72** (94) 2363] [M.A. Rosenberry and T.E. Chupp, *Phys. Re. Lett.* **86** (2001) 22]

Z

Xe cell

 \boldsymbol{B}_{\perp}

 \boldsymbol{B}_{0}

If the coil is coupled to a capacitor Cforming a resonating circuit, the coil produces a transverse **B** field, $B_{\perp}(t)$, $B_x(t) \propto P_y(t)$ $B_{v}(t) \propto -P_{x}(t)$ $\lambda = 795 \text{ nm}$ $\frac{\mathrm{d}P_x}{\mathrm{d}t} = \gamma \left(P_y B_0 - P_z B_y\right) - \frac{P_x}{T_2},$ σ_+ light $\frac{\mathrm{d}P_{y}}{\mathrm{d}t} = \gamma \left(P_{x}B_{x} - P_{x}B_{0} \right) - \frac{P_{y}}{T_{2}},$ $\frac{\mathrm{d}P_z}{\mathrm{d}t} = \gamma \left(P_x B_y - P_y B_x \right) - \frac{P_z}{T_{\cdot}} + \left(P_0 - P_z \right) G.$

Spin oscillator signal

Spin oscillator

"Optically coupled" spin maser

with a feedback field generated according to optical spin detection

Realization of maser oscillation at very low fields (\leq mG) Suppression of drifts in the B_0 field => Suppression of drifts in v

Precision of Precession Frequency

Pumping, probe laser

129Xegas cell -

Solenoid coil

Probe light

Pumping light

Magnetic shield

Feedbackcoll

То

photo diode

EDM cell

Torr seal

ITO conductive coating

EDM cell • 129 Xe : ~ 200 torr •N₂ : ~ 100 torr •Rb ~ 1 mg •SurfaSil coating •size: 10 mm × 10 mm × 10 mm

Relaxation time comparable to that of spherical cell

Maser operation applying E_0

Major sources of frequency drift

(1) Solenoid current I_0

(2) Cell temperature

(3) Environmental field

(4) Other sources

$v_0 - I_0$ correlation

The solenoid current drift induces the frequency drift.

Suppression of current drift

=> Construction of new stabilized current source

\bigcirc Previous current source

Solenoid coil

Major sources of frequency drift

(1) Solenoid current I_0 \rightarrow New stabilized current source

(2) Cell temperature

(3) Environmental field

(4) Other sources

$$v_0 - T_{cell}$$
 correlation

S. Schaefer et al., PRA39 (1989) 5613.

$$\rightarrow \delta(\Delta |\nu_{\rm Xe}|) \sim 1.6 \text{ mHz/}^{\circ} \text{C} \ (T_{\rm cell} = 70 \ ^{\circ} \text{C}, P_{\rm Rb} = 0.2)$$

70.6

Xe frequency shift due to Rb magnetization : proportional to Rb density [Rb]

- => Drift of frequency shift in Xe
 - : [Rb] drift
- => Low cell temperature
 - : suppuration of frequency drift due to temperature drift
 - Maser operation under low cell temperature (~ 50°C)

Major sources of frequency drift

(1) Solenoid current I_0 \rightarrow New stabilized current source

(2) Cell temperature \rightarrow Operation at low cell temperature (~50 °C)

(3) Environmental field

(4) Other sources

$$v_0 - B_{env}$$
 correlation

 B_{env} stabilization system construction

Environmental field stabilization system

for detail see: <u>T. Nanao's poster</u>

- • B_{env} measurement
 - fluxgate magnetometer noise level: ~ 70 nGrms/ \sqrt{Hz}
- Correction coils
 - Coli1,3: ~ 88 A•turn
 - Coil2 : ~ 26 A•turn

Feedback outside the shield

Major sources of frequency drift

(1) Solenoid current I_0 \rightarrow New stabilized current source

(2) Cell temperature \rightarrow Operation at low cell temperature (~50 °C)

(3) Environmental field
 → Field compensation system

(4) Other sources

- Temperature stabilization around the shield
- Measurement of local magnetic field applied to ¹²⁹Xe nucleus,
- \leftarrow ³He co-magnetometer or Rb magnetometer

(the next presentation by Prof. Yoshimi)

<u>Frequency precision</u> under stabilized I_0 , B_{env} and low T_{cell}

Development of high-precision magnetometer using nonlinear magnet-optical rotation (NMOR)

The cell made by Prof. M.V. Balabas : φ 60 mm, T1 ~2s.

Thanks to Prof. Hatakeyama (Tokyo Univ. Agri. Tech.)

Magnetometer for Low freq-Spin maser EDM experiment

- Not comagnetometer
- Rb magnetometer near maser cell
- Only Xe and Rb (small, and not pol)

 $\delta B = 10^{-11} \text{ G}/\sqrt{\text{Hz}}$ 100 s -run (if constant): $\delta B = 10^{-12} \text{ G}$

- · Comagnetometer of Rb
- Only Xe and Rb (small, and not pol)
- Probrem of

Rb – Xe interaction ?

(→ Low density Xe gas ?)
 Polarizability problem

- Comagnetometer of 3He
- S/N for He precession for laser probing .

³He Co-magnetometer

Scheme of ³He Co-magnetometer

EDM is roughly proportional to Z² Negligible EDM in ³He

Monitor & stabilize B_0

Suppress systematic uncertainty

Principles of ³He co-magnetometer

$$\phi_{Xe}(t) = \gamma_{Xe} \frac{B_0}{\downarrow} t$$

$$\phi_{He}(t) = \gamma_{He} B_0 t$$

$$\phi_{He}(t) = \frac{\phi_{He}(t)}{\gamma_{He} t}$$

$$\phi_{Xe}(t) = \frac{\gamma_{Xe}}{\gamma_{He}} \phi_{He}(t)$$

Enable to measure precession signal of ¹²⁹Xe under locked B₀

Production of Polarization of ³He

$$P_{He} = P_{Rb} \frac{\gamma_{se}^{He}}{\gamma_{se}^{He} + \Gamma_{sd}^{He}} [1 - \exp\{-\left(\gamma_{se}^{He} + \Gamma_{sd}^{He}\right)t\}]$$

 γ_{se}^{He} : spin exchange ratio Γ_{sd}^{He} : relaxation ratio

GE180 cell : Low magnetic impurity Low leakage of ³He ¹²⁹Xe : 50 Torr N₂ : 100 Torr He : 470 Torr Rb : ~1 mg

Enclosed

Production of Polarization of ³He/¹²⁹Xe cell

Checked by AFP-NMR measurement

Adiabatic Fast Passage Nuclear Magnetic Resonance

Typically $P(^{3}He) = ~ 3 \%$ $T_{1}(^{3}He) = 100 hours$ @ 100 °C

Experimental setup for ³He maser oscillation test

Magnetic shield

³He : 560 Torr N₂ : 100 Torr Ge180

Probe laser Power: 10 mW Pumping laser Power: 18 W (3 THz)

Maser Oscillation of ³He

Concurrent operation of ¹²⁹Xe/³He

(Preliminary) Freq. Precision

 $\Delta \nu_{\text{He}} \sim 600 \text{ nHz}$ $\Delta \nu_{\text{Xe}} \sim 50 \text{ nHz}$ (For 100 s average)

Enclosed ¹²⁹Xe : 10 Torr

N₂ : 100 Torr He : 470 Torr Rb : ~1 mg

Experimental setup for EDM measurement

Major improvement

TADFB laser Power : 1 W, Width : 10 MHz

Vibration isolated table

Stabilization of Env. field

Stabilization of static field

Present aim

Future Perspective

¹²⁹Xe/³He cell for EDM measurement

Torr seal

ITO transparent electrodes

•Gas pressure		•Pyrex cubic shaped glass
¹²⁹ Xe	: 1 Torr	
³ He	: 470 Torr	 SurfaSil coating
N ₂	: 100 Torr	
Rb	: ~1 mg	

New magnetic shield

New 3-layer magnetic shield ■ Outer: 800mm Φ × 1300mm × 2mm^t

- Middle: $600 \text{mm} \Phi \times 1000 \text{mm} \times 2 \text{mm}^{\text{t}}$
- Inner: $400 \text{mm} \Phi \times 680 \text{mm} \times 2 \text{mm}^{\text{t}}$
- Caps for each layer

Residual field $|B| < \text{few 10 } \mu \text{ Gauss}$ Shielding factor ~ 10⁴ Cf.)~10³ for old one

¹²⁹Xe/³He double spin detection

Operation of a ¹²⁹Xe/³He double-spin maser

Temperature : 103 °C Xe : 10 Torr He : 470 Torr N₂ : 100 Torr

 $v_{feedback} (^{129}Xe) = 3.75 \text{ Hz}$ $v_{beat} (^{129}Xe) \sim 0.2 \text{ Hz}$ $v_{feedback} (^{3}\text{He}) = 10.53 \text{ Hz}$ $v_{beat} (^{3}\text{He}) \sim 0.1 \text{ Hz}$

[Lock-in amplifier] Time const (^{129}Xe): 300 ms Time const (^{3}He): 1 s [signal before amplification] $V(^{129}Xe) \sim 250 \mu V$ $V(^{3}He) \sim 2.5 \mu V$

Summary

- Precession of ¹²⁹Xe spins is maintained for unlimitedly long times, by application of a feedback field generated from optically detected spins. The merit of this optically coupled spin maser as a scheme for the EDM search is the capability of operation at very low B₀ fields, as mG or below.
- Sources of frequency drifts have been identified, and steps taken to overcome them, such as (1) the current source renewal, (2) adoption of low cell temperatures, (3) installation of a field compensation system, and (4) development of a Rb NMOR magnetometer and ³He co-magnetometer.
- Frequency precision presently reached is 7.9 nHz, which corresponds to an EDM sensitivity of 8×10⁻²⁸ ecm (*E*=10kV/cm).
- EDM cell equipped with transparent electrodes was prepared.
- ³He co-magnetometer is being developed, and recently the operation of a ³He/¹²⁹Xe double-spin maser has been tested.