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1 Notation

mi : rest mass of particle i
Ei : total energy of particle i
p⃗i : momentum of particle i

pi : four momentum of particle i
[(

p⃗i
Ei

)
; p2

i = p2
i −E2

i = −m2
i

]
Ti : kinetic energy of particle i

β⃗i : velocity of particle i
[

p⃗i

Ei

]

γi : Lorentz gamma of particle i

 1√
1−β 2

i


M : invariant mass consisting of particle 1, 2, ..., n


√√√√(

n

∑
i=1

Ei

)2

−

(
n

∑
i=1

p⃗i

)2


Ed : decay energy (relative energy)

[
M−

n

∑
i=1

mi

]
All the calculations use the unit of c = 1

2 One-body kinematics

p2 = E2 −m2 = T (T +2m)

T = E −m =
p2√

p2 +m2 +m
E = mγ
p⃗ = mγβ⃗

T = m(γ −1) = m
β 2γ2

1+ γ

1



3 Invariant Mass and Decay Energy

3.1 Two-body kinematics

M2 = (E1 +E2)
2 − (p⃗1 + p⃗2)

2

= (m1 +m2)
2 +2(E1E2 −m1m2 − p⃗1 · p⃗2)

Ed = M− (m1 +m2) =
F√

(m1 +m2)
2 +F +(m1 +m2)

F = 2(E1E2 −m1m2 − p⃗1 · p⃗2)

=
T1

T2
(T2 (T2 +2m2))+

T2

T1
(T1 (T1 +2m1))−2p⃗1 · p⃗2

= T1T2

(
p⃗1

T1
− p⃗2

T2

)2

Example 1: Non relativistic limit

In this case, T → 1
2mβ 2, p⃗ → mβ⃗ , p⃗/T → 2β⃗/β 2, and F/(m1 +m2)

2 → 0, then

Ed =
m1m2

m1 +m2

(
β⃗1 − β⃗2

)2
.

Example 2: Photon emission

If the particle 2 is photon, T2 = p2 = E2 = Eγ , then

Ed =
F√

m2
1 +F +m1

F = 2m1Eγγ1 (1−β1 cosθ12) ,

where the recoil effect by emitting photon is included. If one neglect this, i.e.
F/m2

1 → 0,

Ed → Eγγ1 (1−β1 cosθ12) ,

which is well-known formula for the Doppler shift.
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3.2 Many-body case

Ed =
F√

(∑n
i=1 mi)

2 +F +∑n
i=1 mi

F = ∑
i< j

Fi j

Fi j = TiTj

(
p⃗i

Ti
−

p⃗ j

Tj

)2

Example: Non relativistic limit

In this case, T → 1
2mβ 2, p⃗ → mβ⃗ , p⃗/T → 2β⃗/β 2, and F/(∑n

i=1 mi)
2 → 0, then

Ed =
∑i< j

(
mi +m j

)
Ei j

∑n
i=1 mi

Ei j =
mim j

mi +m j

(
β⃗i − β⃗ j

)2
.

4 Lorentz Transformation
Suppose that the system X ′Y ′Z′ moves relative to the system XY Z with the veloc-
ity of β⃗ = β n⃗ (|⃗n|= 1) under the condition that n⃗ and n⃗′ are “quasi-parallel”1. The
transform matrix A (T (p′x, p′y, p′z,E

′) = A T (px, py, pz,E)) is given by:

A =


1+(γ −1)n2

x (γ −1)nxny (γ −1)nxnz −βγnx
(γ −1)nxny 1+(γ −1)n2

y (γ −1)nynz −βγny
(γ −1)nxnz (γ −1)nynz 1+(γ −1)n2

z −βγnz
−βγnx −βγny −βγnz γ



=


1 0 0 −βγnx
0 1 0 −βγny
0 0 1 −βγnz

−βγnx −βγny −βγnz 1

+(γ −1)


n2

x nxny nxnz 0
nxny n2

y nynz 0
nxnz nynz n2

z 0
0 0 0 1


The first term in the second line denotes the boost in the space relating to the
Galilei transformation. However, the second term corresponds to the rotation in
the space, which is Relativistic effect relating to the Thomas precession.

1Consider the space component a⃗ =T (ax,ay,az) of a four vector a in the XY Z system. If the
space component a⃗′ =T (a′x,a

′
y,a

′
z) in the X ′Y ′Z′ system has the relation of a′x/ax = a′y/ay = a′z/az,

a⃗ and a⃗′ are called as “quasi-parallel”.
Proof that n⃗ and n⃗′ are quasi-parallel but |⃗n′| ̸= 1, when using the above transformation matrix A.
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5 Binary Reaction
Consider a binary reaction A(a,b)B with a incident momentum p⃗ of a on a fixed
target A. The rest masses are denoted as M, m, m′, and M′ for A, a, b, and B, re-
spectively. The momenta of b and B after the reaction are denoted as p⃗′ (scattering
angle of θ ) and P⃗′ = q⃗, respectively (Fig. 1).

µ´¶³
a

m; p⃗

-

&%
'$

A

M; 0

@
¡

µ´¶³
b m′; p⃗′; θ

»»»»:

&%
'$

B

M′; P⃗′ = q⃗CCW

Figure 1: A binary reaction in the laboratory frame (before and after).

5.1 Momentum transfer (q) and Energy transfer (ω) in labo-
ratory frame

We define the momentum and energy transfer to the target system and the mass
difference between b and a as:

q⃗ ≡ P⃗′ = p⃗− p⃗′

ω ≡ M′−M
∆m ≡ m−m′ .

From the momentum and energy conservation law, one obtain

q2 =
(

p− p′ cosθ
)2 + p′2 sin2 θ√

m2 + p2 +M =
√

(M +ω)2 +q2 +
√

(m−∆m)2 +(p⃗− q⃗)2

In the following small momentum transfer comparing to the rest masses and a
small scattering angle:

q ≪ M , q ≪
√

m2 + p2 , θ ≪ 1 ,
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the above relation is deduced to be√
m2 + p2 +M ∼= M +ω +

√
m2 + p2

1−
m∆m(1−∆m/(2m))± p

√
q2 − (pθ)2

m2 + p2


One obtain a simple relation between q and ω as

(βq)2 −
[

ω − ∆m
γ

(
1− ∆m

2m

)]2
∼= (β pθ)2

q ∼=
1
β

[
ω − ∆m

γ

(
1− ∆m

2m

)]
at θ = 0.

5.2 Center-of-mass frame
We consider the momentum transfer q⃗ in the center-of-mass (CM) frame. The
momenta of A, a, b, and B in the CM system are denoted as p⃗c, −p⃗c, p⃗′c, −p⃗′c,
respectively. It is noted that q is not invariant, i.e. q⃗ is not always equal to p⃗c− p⃗′c.
The relative velocity of the CM frame with respect to the laboratory frame, βCM,

and γCM = 1/
√

1−β 2
CM are expressed as

βCM =
p√

p2 +m2 +M
=

pc√
p2

c +M2

γCM =

√
p2 +m2 +M√

M2 +m2 +2M
√

p2 +m2
=

√
pc +M2

M
.

Using these quantities, the momenta in the laboratory frame are represented by
those in the CM frame:

p = γCM

(
pc +βCM

√
p2

c +m2
)

p′ cosθ = γCM

(
p′c cosθc +βCM

√
p′2c +m2

)
p′ sinθ = p′c sinθc .

Then, the momentum transfer q⃗ is expressed by the CM momenta as

qcosθ =

√
p′2c +M′2

M
pc −

√
p2

c +M2

M
p′c cosθ

→ M′

M
pc − p′c cosθ (non-relativistic limit)

qsinθ = −p′c sinθc

q⃗ → M′

M
p⃗c − p⃗′c (non-relativistic limit)
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