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6.  Energy and electromagnetic observables of one-particle states

6.1.  spherical case – effective one-particle operators (E2, M1, E1)

The deviation of eEepol /)( λ bareeff gMg /)( λand from unity depends on ,λthe multipole
one-particle orbits, and the size of the configuration space included in the construction of 
wave functions.

For example, if the wave functions are constructed taking into account the whole degrees
of freedom of all nucleons in a given nucleus, the “effective” operators should be the same
as the bare operators, except the renormalization coming from possible non-nucleon 
degree of freedom.

In this section we assume that all possible configuration mixing within one major shell 
is already taken into account in the construction of wave functions of states.
This includes so-called one-particle states (= one-particle + closed-shell core).
Then, the renormalization of one-particle operators comes from the core polarization 
involving virtual excitations of giant resonances, besides the possible contribution 
by non-nucleon degree of freedom.

In other words, the major components of wave functions are explicitly taken into account
in the construction of wave functions.  The effect of some small components on the matrix 
element of a particular operator, which appreciably contribute to the matrix-element 
in spite of small admixed probabilities in wave functions, is expressed by renormalizing
one-particle operators.  → effective operators



Core plus               particle

Core polarization

If the relevant interaction is attractive, If the relevant interaction is repulsive,

one-particle moments increase. one-particle moments are reduced.

For spin polarization of the core the density above should be replaced by spin density. 

coretrE ω<<∆ trE∆( coreIf : transition energy, ω : energy of core excitations), and

[mixed probability of core excitations into one-particle wave-functions]  << 1, }
the effect of admixed components can be expressed by the renormalization of one-particle

operator → static polarization and effective one-particle operators



1) one-particle energy, , obtained for the potential is identified as an observed  jε
one-particle energy.

Or, alternatively one-particle energy can be calculated in the Hartree-Fock
approximation, if the two-body interaction is sufficiently known, and 
the one-particle energy is identified as an observed one-particle energy. 

In shell model calculations one-particle energies are often just parameters.
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Estimate of static E2 polarization charge using  ISGQR and  IVGQR 
in a harmonic oscillator model

ħωISGQR=58 A-1/3 MeV
ħωIVGQR=135 A-1/3 MeVn. excess to preserve the local ratio of n & p in IS GQR

IV coupling field should not act on the total density at any point
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Neutron excess of the core makes both )2(Een
pol and )2(Eep

pol smaller.

For neutrons )1( +=zτ

⎟
⎠
⎞

⎜
⎝
⎛ −

−+=
A

ZN
A
ZeEen

pol 62.032.0)2( → smaller,  as  (N-Z)  becomes  larger, for a given A.

For protons )1( −=zτ

⎟
⎠
⎞

⎜
⎝
⎛ −≈ 32.0)2(

A
ZeEep

pol

ex.
20( 2) 0.32 0
60

p
pole E e⎛ ⎞≈ − ≈⎜ ⎟

⎝ ⎠ 40
40
20Cafor



The value of )2(Eepol depends somewhat on nucleon orbits.  In particular, the polarization
effect decreases for weakly-bound nucleons, since those nucleons being outside the nuclear
surface cannot efficiently polarize the core.

in the previous page)2(EepolA simple approximate correction is to multiply the standard
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ex.  Derivation of the first term of

In the harmonic oscillator model one can show ;
“One particle outside of the closed shell induces a mass quadrupole moment 
in the closed shell, which is equal to its own mass quadrupole moment.”

(B.R.Mottelson, Les Houches, 1958 (Dunod, Paris, 1959) p.283-315.)
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A
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Equilibrium shape for a system of a single-particle outside of closed shell 
← self-consistency condition of potential and density

)2,()2,()2,(

…….

Mass quadrupole moment
=+=== − λλλ ISmISmISm polcoresp

Then, in the harmonic oscillator model one obtains
)2,()2,( ===− λλ ISmISm sppolcore

∴ For E2 operator (Z : proton number of the core,  A : nucleon number of the core)

e
A
ZEepol =)2( for both protons and neutrons

Note : this harmonic oscillator model produces the frequency of ISGQR
3/1

0 582 −== AISGQR ωω MeV

which is consistent with the observed systematics.



3) Magnetic dipole moment of a single nucleon
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Empirical values in medium-heavy nuclei are

while those in lighter nuclei are somewhat closer to unity.

for both protons and neutrons,

The spin-saturated core (i.e.  ℓ-s closed nuclei such as 16O  and  40Ca) cannot spin-polarize
in the lowest order 

→ 1)/( ≈free
s

eff
s gg for one-particles outside the spin-saturated core.



( ) 1 ( )effg p g pδ= +
Writing

)()( ngngeff δδ =
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and

+≈pgδ 05.0)( −≈ngδEmpirical values are and

(S.Nagamiya and T.Yamazaki, Phys.Rev.C4(1971)1961)

Those gδ values are compatible with the effect of the meson-exchange current,
while they are also consistent with the modification in the current implied by 
the velocity-dependent effective interaction. 

(Bohr &Mottelson, Vol.II, p.484)

Core polarization effect may not simply be described in terms of a renormalization of 
bare one-particle operators.
Thus, effective magnetic moment operator may have, for example, a term like

νλνδµ ,12 ))(()( == sYrf

radial distribution of the polarizing particle



4) E1 transition operator, which should be orthogonal to the center of mass motion
that must not create an excitation,
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due to the polarization effect associated with IVGDR (Iso Vector Giant Dipole Resonance). 

ex.  Empirical values obtained in the Pb region are
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(from the analysis of E1 decays of octupole multiplet members in 209Bi and 207Pb.)
I.H., Physics Reports,10C (1974) 63-105.



In very light halo nuclei such as 11 Be, one may expect

e
A
NEep

eff ≈)1( e
A
ZEen

eff ≈)1(and

weakly-bound orbits  → a change of shell structure and wave-functions

halo particles  → difficult to polarize the core{



Observed low-energy E1 transitions in stable spherical nuclei are usually very much hindered;

In medium-heavy nuclei  B(E1) < (10–5 ) BW(E1)

)∵
there is no close-lying one-particle configurations that can be connected by 
E1 operators in either light or medium-heavy nuclei; 

In addition to the small )1(Eeeff values, due to the nuclear shell-structure

ex. 20

8
2s1/2 , 1d3/2 , 1d 5/2

82

50

3s1/2 , 2d3/2 , 2d5/2 , 1g7/2 , 1h11/2

The strong hindrance of low-energy E1 transitions makes it almost impossible
to obtain any nuclear structure information from the B(E1) values.



6.2.  From the Y20 deformed intrinsic system to laboratory system

The intrinsic wave functions are not eigenstates of angular momentum, while
the states observed in the laboratory system are the eigenstates. 

Thus, one has to construct the total wave functions using respective intrinsic 
wave functions.

Angular momentum projection from a deformed intrinsic wave function is one way of 
getting back an eigenstate of angular momentum.   However, the projection includes 
no possible rotational perturbation of intrinsic states.
Particle-rotor model with particles (or some intrinsic degrees of freedom) referred to 
the body-fixed system is another model, in which angular momentum is 
a good quantum number.

In the following the simplest and practical (though approximate) way of getting back 
total angular momentum (Bohr &Mottelson, Vol.II), which is generally expected to work 
better in heavier nuclei.

In 6.2. a general form of the total wave function for a given intrinsic wave function with 
Y20 deformed intrinsic shape (i.e. axially symmetric and R-invariant shape) is derived. 
The formulas can be used not only for intrinsic one-particle configurations but also 
for more complicated intrinsic configurations.

In 6.3. energies with Y20 deformed intrinsic shape are described.

In 6.4. electromagnetic properties of the system with Y20 deformed intrinsic shape are
described.   



From now on:

(1, 2, 3)  :  body-fixed system
(x, y, z)   :  laboratory system

I 3 (= symmetry axis fixed 

z (= axis fixed in the laboratory)

in the body)

K ← I3
M ← Iz

µ

ν

: components referred to the 
laboratory system { : components referred to the 
body-fixed system

I

J

R

K = Ω

3
(sym axis)

I = R + J

Total angular momentum  I

R : angular momentum of collective rotation

J : intrinsic angular momentum

axially-sym shape → K (← I3 ) = Ω (← J3 )

No collective rotation about symmetry axis ;  R3 = 0
( OBS.  No collective rotation in spherically-symmetric nuclei )



Total (= intrinsic x rotational) wave functions
and consequences of symmetry

If the intrinsic and rotational parts of the Hamiltonian are separated, the eigenstates
of the Hamiltonian are the product form 

Ψα,I = Φα(q) φα,I(ω)
Φα(q)  :  intrinsic wave-function
φα,I(ѡ)  : rotational wave-function

where  α : quantum number specifying intrinsic states, 
q : intrinsic variable, 
ω : angular variables specifying the orientation of the deformed body

with respect to the laboratory system,
I : angular-momentum quantum-numbers.

Rotational wave functions ;

(1)  In 2-dimensional rotation (a rotation about a fixed axis) 

ω → θ
I  → M

φα,I(ω)   ~   exp ( iMθ )

(2)  In 3-dimensional rotation
ω→ 3 Euler angles (Φ,θ,ψ), to specify the orientation
I → 3 quantum numbers:

2)(I ,  M (←Iz ),  K (←I3 )

of the body.)(ωI
MKDφα,I(ω)   ~
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zyx III ,, ; give the change in the state vector when the lab system is rotated about one of its
own axes.

321 ,, III ; describe the change in the state vector when the lab system is rotated about an axis
of the body-fixed system.



Rotational degrees of freedom  ← restricted by the symmetry of deformation

ex.  Spherically symmetric nuclei  → No collective rotation
ex.  Axially-symmetric deformed nuclei  → No collective rotation about the symmetry axis
ex.  R-invariant axially-symmetric deformation

→ rotation  R┴(π) (≡ rotation π about the axis ┴ symmetry axis) 
must not be included in the rotational degrees of freedom

Correspondingly, 
the form of total wave function (in general, a sum of products of intrinsic and 
rotational wave-functions) is governed by the symmetry of deformation.



Total wave function for  Y20 deformed intrinsic shape
(a) axially-symmetric shape  → no collective rotation about the sym axis (=3-axis)

→ K (← I3 )  =  Ω (← J3 )

2
2 1( ) ( , , )
8

I
KIM K MK

Iq D φ θ ψ
π
+

Ψ = Φ

R┴ (π) → R2 (π) ≡ rotation π about the 2-axis
I3J3

(b) R-invariant shape, in addition to axial symmetry ( taking K > 0 )
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Rotation by  R2(π) does not belong to collective rotation (quantum effect !).

($)

)()( qq KK −Φ∝Φ

For a Hamiltonian with a coupling between intrinsic and rotational motion, a set of wave functions ($) can be 
used as a basis for diagonalization.        ex. particle-rotor model (Bohr &Mottelson, vol.II, Chap. 4A) . 

Obs. The 1st and 2nd term in ($) can be connected by the operator with ∆K = 2K.
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ex.  For K=1/2 bands → the term ( ( 1) )I∝ − in the energy

i.e. from the two intrinsic states with K and –K, only a single rotational state can be formed

→ ( 1) I− dependent term in observables

Note for a given I.



R-invariance :  deformation is invariant under  R2 (π)  (≡ rotation π about the 2-axis)

Then, R2(π) is not included in collective rotational degrees of freedom.

R ≡ R2 (π) can be expressed as 
Re  ≡ R2(π) , rotation π of the lab system (x, y, z) about the 2-axis
Ri ≡ R2(π) , rotation π of the body about the 2-axis

Ψ :  total wave-function
Ψ=Ψ ie RR

is determined by

e iR RΨ = Ψ 1
i eR R− Ψ = Ψ
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)()( 1 qRq KiK Φ≡Φ − :  Intrinsic state with –K, which is degenerate with )(qKΦ

KKR −∝ since Ri inverts the direction of the 3-axis. 

R-inv Total wave function is a definite combination of two degenerate states with
K and –K.

→ ($)

In fact, )(qKΦ = T )(qKΦ where T : time reversal operator

Then,  for Ψ 1' (1 )i eR R−Ψ ≡ + Ψ ' 'e iR Rsatisfies Ψ = Ψ

and
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the cross term of the first and second terms in the above { … } can produce ;

ex.1 ( 1)I− dependent term in the expectation value of the operator j I± ∓
( ~ Coriolis coupling)

,( 1) ( ) ( ) ( ) ( )I K I I
M K K MKK q D j I q Dω ω+

− ±∝ − Φ Φ∓

that is non-zero only for K=1/2 . )∵ j± and I∓ change K-value only by  ±1.

( 1)I− dependent term in the rotational energy of K=1/2 bands.

ex.2 ( 1)I− ( )T T Dλ λ λ
µ ν µν

ν
dependent part of matrix elements of the operator ω= ∑

,( 1) ( ) ( ) ( ) ( ) ( )I K I I
M K K MKK q D T D q Dλ λ

ν µν
ν

ω ω ω+
−∝ − Φ Φ∑

For example,  in B(M1) within a given K=1/2 band,  and 
in B(E2) within a given K=1 band, but
not in B(E2) within a given K=1/2 band.

( , , )ω φ θ ψ≡
Euler angles :

R-inv shape →

,( 1) ( ) ( ) ( ) ( )I K I I
K K M K MKq j q d D I Dω ω ω+ ∗

− ± −∝ − Φ Φ ∫ ∓

,( 1) ( ) ( ) ( ) ( ) ( )I K I I
K K M K MKq T q d D D Dλ λ

ν µν
ν

ω ω ω ω+ ∗
− −∝ − Φ Φ∑ ∫

can be non-zero for  ν = 2K .

T λ
µ

:  operator in the lab system

T λ
ν

:  operator in the intrinsic system

λ = 1  and  |ν| ≤ 1   for  M1

λ = 2  and  |ν| ≤ 2   for  E2



K=0 band Re ≡ R2(π), rotation π of lab system (x, y, z)
about the 2-axis

= equivalent to invert the 3-axis for the 
fixed lab system (x, y, z))(),(

12
4)(),,( 000,,0 qY
I

qD KIMK
I

KMIMK ==== Φ
+

=Φ=Ψ φθπψθφ

),()1(),(),( φθπφθπφθ IM
I

IMIMe YYYR −=+−=

inverts the direction of the sym axis (=3-axis)

00 == Φ=Φ KKi rR

Ψ=Ψ ie RR rI =− )1(

I = even  for  r = +1
I = odd  for  r = -1

The ground state of even-even nuclei has  K=0 and  r = +1
(Pairwise-occupied  (±Ω)  nucleon states have  r = +1.)
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−

Ω −=≡ φφφ ii RR 1 for Ω = half integer.
2
iR φ φΩ Ω= −( or )
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1)2,1( Φ=+−=Φ ΩΩΩΩ φφφφiR

This explains: the ground-band of even-even nuclei has only  Iπ = 0+ , 2+ , 4+ , …..



one-particle states in the many-body system

In spherical case

[ closed-shell core with J=0 ]  → spherical potential

{ one-particle + closed-shell core (J=0) }  :  one-particle states

In Y20 deformed case

[ pairwise-occupied even-even core with K=0]  → Y20 deformed potetnial

{ one-particle + even-even core (K=0) }  :  one-particle states

For a moderate deformation,

the values of )( λEepol and )( λMg pol in one-particle operators due to the virtual
excitations of Giant Resonances of the core remain nearly the same as in spherical case.

However, ),( νλEepol and ),( νλMg pol are expected, since the properties of GR

in Y20 deformed nuclei depend on the tensor components ν in the intrinsic system.



6.3.  Energies with Y20 deformed intrinsic shape 

If the deformation and rotation degrees of freedom can be approximately separated, 
one expects a rotational band associated with each intrinsic configuration.
In other words, to observe rotational spectra is a simple way to find that the nucleus is 
deformed.

One-particle energies obtained in a deformed potential correspond to the energies of 
band-head states with the intrinsic one-particle configurations. 

In the present section we describe the properties of the states close to band-head states, 
without taking into account Coriolis perturbation of the intrinsic structure.

Rotational energy associated with a given one-particle configuration (where K = Ω),
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for normal-parity orbits

Thus, for normal-parity orbits the band-head state with Ω=1/2 is almost always I=1/2,
though the rotational spectra may deviate from I(I+1) .



ex.  The N=13 th neutron orbit is seen in low-lying excitations in 25Mg13 

s1/2

Note  (a)  I ≥ K (← I3 )
(b)  the bandhead state has I=K.

Exception may occur for K=1/2 bands.
(c) some irregular rotational spectra are 

observed for K=1/2 bands.

1) Leading-order E2 and M1 intensity relation
works pretty well 
→ Q0 ≈ +50 fm2 → δ ≈ 0.4

(gK – gR) ≈ 1.4  for [202 5/2]   etc.

f7/2



Rotational spectra unique in the intrinsic configuration with  Ω=1/2
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Ilowest of 
the Ω=1/2 band

For one-particle in a single j-shell ( ≈ high-j shell)

)
2
1()1( 2/1 +−= − ja j =   +1   for  j=1/2               1/2

-2   for  j=3/2               3/2
+3   for  j=5/2               1/2
-4 for  j=7/2 3/2
+5   for  j=9/2               5/2
-6   for  j=11/2             3/2 and 7/2
+7   for  j=13/2             5/2

decoupling parameter

1/2

3/2
7/2

11/2

5/2

9/2

13/2

In rotational bands with high-j configuration 
[ I = j mod 2 ] levels are pushed down

relative to 
[ I = j-1 mod 2 ] levels,

also after including the full Coriolis coupling. 
M.E.Bunker and C.W.Reich,Rev.Mod.Phys.43 (1971)348.
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6.4.  Electromagnetic properties of the system with Y20 deformed intrinsic shape

Writing KIMΨKIM for the state with the wave function in ($) ,
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the reduced transition probability is written as
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1 2 1 1 2 2 2 , 1( 1) ( ; , , )I K
K KC I I K K K K K T Kλλ+
++ − − +

If   K1 = 0 ,

for  (K1 ≠ 0 and  K2 ≠ 0)

2
1,2

2
22212211 0)0;(),0,(

2
==→= KTKKKIICIKIKB Kλλλ { 2   for  K2 ≠ 0

1   for  K2 = 0

1)1( 2 +=− Kc

For matrix elements within a band, the second term inside { } vanishes for

where c = -1 (+1) for electric (magnetic) transitions

For matrix elements within a K=0 band, 000 0, === KTK λ , for magnetic operators.



For reference,

If the intrinsic moments  Tλµ does not depend on I± , the matrix element between 
the two states with the form of the wave function, ($), is given by

{ 1,2212121
2/1

11122 12
),,;()12( KTKKKKKIICIIKTIK KK −=−+= νλλ λ

}1,2221121 21

11 ),,;()1( KTKKKKKIIC KK
KI

+=
+ +−−+ νλλ

BM,Vol.II, eq.(4-91)

When the intrinsic states are one-particle configurations, the  intrinsic matrix elements of 
M1, E1 and E2 operators

1,2 KTK µλ

can be evaluated using Tables 1 and 2 appended in the end of Chap.4,
depending on whether the wave function of the one-particle configuration is approximated 
by an [N n3 Λ Ω] representation or a single-j configuration.

and 1,2 KTK µλ

If one of the bands, or both, has K=0,

0)0;()12(,0 1,22221
2/1

11122 2
=+== = KTKKKIICIIKTIK Kνλλ λ { 2 02 ≠K

1

)0,0( 21 ≠≠ KKfor

02 =K
BM Vol.II, eq.(4-92)



Transitions between two bands with intrinsic configurations α1,Ω1 (= K1) and α2,Ω2 (= K2)

α2 K2 α1K1

22
1 1 1 2 2 2 1 2 1 2 1 2 2 2 1 1( ; ) ( ; , , )B K I K I C I I K K K K K T Kλλ α α λ α α→ = −

If KI+− )1( term is absent or negligible,ex.

kinematical factor intrinsic matrix element, common in all transitions

= 0   for  | I1 – I2 | > λ or    | K1 – K2 | > λ

I

I

I+1

I-1

λ The ratio of B(λ) values between the members of 
given two bands is obtained from the 
Clebsch-Gordan coefficients,;

2
1 2 1 2 1 2( ; , , )C I I K K K Kλ −

B(λ) :  B(λ) : B(λ)
2

1 2 1 2( 1; , ,C I I K K K Kλ + − ) : 2
1 2 1 2( 1; , , )C I I K K K Kλ − −2

1 2 1 2( ; , , )C I I K K K Kλ − :≈



1)  Magnetic dipole (M1) moments and transitions

sggRgM sR ++∝1( One-particle ) M1 operator in the intrinsic (= body-fixed) system

sRI ++=

rotational angular momentum of the even-even core

3( 1) ( )
4 2 R s

eM g R g g s
Mcν ν ν νπ

= + +

3 ( ( ) ( ) )
4 2 R R s R

e g I g g g g s
Mc ν ν νπ

+ − + −

magnetic moment M1 transition

)∵
The operator Iν does not make any transitions.



AZgR /= :  a uniform rotation of a charged body

Rg values obtained from observed magnetic moments of  21+ states of even-even nuclei
using IgR=µ are somewhat smaller than  Z/A.

np

p
Rg

ℑ+ℑ

ℑ
≈ where ℑ (= moments of inertia)  → larger  for  ∆ → smaller

np ∆>∆ → AZgR /<ex.  In even-even rare-earth nuclei  the pairing gap

In odd-A nuclei one may expect

{ smallerp →∆ and pℑ → largerfor odd-Z nuclei  whereAZgR />

andsmallern →∆AZgR /< for odd-N nuclei  where nℑ → larger

Indeed, one observes
NoddRZoddR gg −− > )()(

In practice,
eff
ss gg → effgg →and

Furthermore, in axially-symmetric deformed nuclei one generally expects

213 sss ggg =≠



For one-particle configuration with Ω in Y20 deformed shape potential, we have K=Ω,
and static magnetic dipole moments and M1 transition probabilities within a given 
one-particle configuration (i.e. within a given band) can be written

1
)(

2

+
−+=

I
KggIg RKRµ bI

I
ggK IRK 2/1)1)(12(

)1(4
)2/1,( +−+

+
−

+δ

1 2 1( 1; , , 1)B M K I K I I→ = ± =

2
2 2 2

1 2
3 ( ) ( ( 1 ; 0 ))

4 2 K R
e g g K C I I K K
Mcπ

⎛ ⎞ −⎜ ⎟
⎝ ⎠

for  K > ½

( )
22 1

22 2
1 2

3 ( ) 1 ( 1) ( 1 ;1/ 2,0,1/ 2
16 2

I

K R
e g g b C I I
Mcπ

>+⎧ ⎫⎛ ⎞ − + −⎨ ⎬⎜ ⎟
⎝ ⎠ ⎩ ⎭

for  K = ½{
where I>  denotes the greater of I1 and I2 ,

3 3K sg K g g s= Ω + Ω

b ( = magnetic decoupling parameter) is defined byand

2/1)()(2/1)( =Ω−+−=Ω=− ++ sggggbgg RsRRK

which can be rewritten 

)2()1(
2
1)()( gggaggbgg KsRRK −+−−−−=−

+++ += sj



gR and gK factors in odd-Z and odd-N nuclei
obtained by combining a measured magnetic
moment with a measured B(M1) value

Observed gR factors from the 2+ first rotational
states of even-even nuclei



ex.  Can the measured magnetic moment of the ground state with Iπ=1/2+ in 11Be or 15C
tell whether the nucleus is spherical or deformed ?

obsµ =  1.720(9) Nµ in  15C9 (K.Asahi et al.)

obsµ = -1.6816(8) Nµ in  11Be7 (W.Geithner et al.,PRL,1999)

The answer is “no”. (I.H. and S.Shimoura, J.Phys.G:34(2007)2715.)

For a spherical shape the relevant one-particle orbit must be s1/2 .  Then,  µ = (0.5) gs
eff in µN .

For a prolately deformed shape the one-particle orbit must be the [220 1/2] orbit.

Then, decoupling parameter 1=a
0=g

,

because of neutron,

3 3 /K sg g g s= Ω + Ω K

)2()1(
2
1)()( gggaggbgg KsRRK −+−−−−=−

sg=

= )(
2
1

KsR ggg +−

1
)(

2

+
−+=

I
KggIg RKRµ bI

I
ggK IRK 2/1)1)(12(

)1(4
)2/1,( +−+

+
−

+δ = (0.5) gs
eff in  µN .

(independent of Rg )



2)  Electric quadrupole (E2) transitions

With quadrupole deformed intrinsic shape all nucleons collectively contribute to E2 moments.

Intrinsic quadrupole moment with an axially symmetric quadrupole deformation

∑ −≡
p

pp KreKeQ )1cos3( 22
0 θ KEMK )0,2(

5
16 2/1

=⎟
⎠
⎞

⎜
⎝
⎛= νπ

where ),2( νEM denotes the components referred to the body-fixed system.

The E2 moments referring to the lab. system

The collective E2 moment above connects states belonging to the same rotational band.

)0;2( 21 KKIIC ≈where for KI >>

2/1

8
3
⎟
⎠
⎞

⎜
⎝
⎛

I
K2/1

2
3
⎟
⎠
⎞

⎜
⎝
⎛±

2
1

−
{ for 212 ±= II

for 112 ±= II

for 12 II =

,

∑=
ν

µν ωνµ )(),2(),2( 2DEMEM )()0,2( 2
0, ων νµ ==⇒ DEM ),,( ψθφω = : Euler angles

2
21

2
0

2
21 )0;2(

16
5);2( KKIICQeKIKIEB
π

=→

ex.  In well-deformed rare-earth nuclei,

B(E2;K=0,I=2 → K=0,I=0) ≈ 200 BW(E2)



The static quadrupole moment in the lab system

0)0;2()0;2( QIIIICKKIICQ = 0

2

)32)(1(
)1(3 Q

II
IIK
++
+−

=
00 >Q

00 <Q

:  prolate shape

:  oblate shape{
keeping a fixed ;∞→I K

→Q −
2

0Q

For I=K  (i.e. the band head state in most cases)

0)32)(1(
)12( Q

II
IIQ

++
−

=

Note  ∞→I keeping IK = ;

0QQ → ;  classical limit



For ellipsoidal shape (or triaxial shape)

K is not a good quantum number,
and the collective E2 moments depend on two intrinsic quadrupole parameters, Q0 and  Q2 .

{ })(
16

5 2
2,

2
22

2
00 −++⇒ µµµπ

DDQDQe∑=
ν

µν ωνµ )(),2(),2( 2DEMEM

where αα ∑ −−≡
p

pxxxQ )2( 2
2

2
1

2
30

∑ −≡
p

pxxQ αα )(
2
3 2

2
2
12

γβ cos
5
4 2

0ZR⎟
⎠
⎞

⎜
⎝
⎛⇒

γβ sin
25

4 2
0ZR⎟

⎠
⎞

⎜
⎝
⎛⇒

5 of µ values 
(µ = −2, −1, 0, +1, +2)

)2(
16

5 2
2

2
1

2
320

2 xxxYr −−=
π

2
2122

2 )(
32
15 ixxYr +=
π

2
2122

2 )(
32
15 ixxYr −=− π

→ 3 Euler angles
2 intrinsic quadrupole
parameters, Q0 and Q2

{
:  intrinsic stateα

{ )0;2(
16

5)12()2( 21210

2/1
2/1

11122 KKIICQeIKIEMKI ⎟
⎠
⎞

⎜
⎝
⎛+=

π

( ) }),2,;2()2;2( 212121212 KKIICKKIICQ −++



3)  Electric dipole (E1) transitions

In Y20 deformed nuclei one expects

)1,1()0,1( ±=≠= νν EeEe polpol

since GDR (Giant Dipole Resonance) in Y20 deformed nuclei splits into

2 peaks with 0=ν and 1±=ν



ex.1.  In very light halo nuclei such as 11 Be, one may expect

e
A
NEep

eff ≈)1( e
A
ZEen

eff ≈)1(and (%)

b) {The [220] ½ + wave function  ~  s1/2 } because of halo.

Observed Strong E1 transition,  
B(E1;1/2+→1/2-) = (0.115±0.01) e2 fm2 = 0.36 BW (E1) : the largest B(E1) so far observed.

320

½ +

½ -

Sn = 504 keV

2/1p≈

2/1s≈ } even if the nucleus is deformed.E1

7
11
4 Be

0

a) ε(s½ ) is pushed down relative to ε(p½ ) due to weakly bound

The observed large B(E1) value can be indeed explained by using the value (%) together with
a deformation  β = 0.7~0.8 .      (I.H. and S.Shimoura, J.Phys.G:34(2007)2715.)

Note ½ - at  320 keV ~  [101 1/2]

The ground ½ +  ~  [220 1/2] } Asymptotically <[101 1/2]|E1|[2201/2]> = 0

Thus, if it is not a halo nucleus, 
the E1 transitions are much hindered.



ex.2.   Both quadrupole- and octupole deformation  → intrinsic dipole moment.

Relatively large B(E1) = (10–2 ~ 10–4 ) BW(E1) values are observed between the yrast
positive- and negative-parity bands in  the Ra-Th region (N ~ 136) and Ba-Sm region (N~88),
especially for high spins.

Those nuclei are supposed to be 
quadrupole-soft (or deformed) and octupole-soft (or deformed).

Octupole deformation in addition to quadrupole deformation

→ a shift between the center of charge and the center of mass
(Electric charge would move toward the surface region with large curvature.)

→ dipole moment D in the body-fixed frame

c.m. coordinate for neutronsIn the body-fixed system

( )....

)()()()( 11
mcnmcp

n

k
k

p

i
i

n

k
k

p

i
i zz

A
NZez

N
z

ZA
NZez

A
Zez

A
Ne −− −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=− ∑∑∑∑

c.m. coordinate for protons

Assuming an axially-symmetric shape
0,1320 )( =−= ∝ νν ββD



Octupole softness (or deformation) can be seen from observed very low-lying
negative-parity levels in even-even nuclei.

Ex.   in
136

224
88 Ra the lowest 1- state is known only at  216  keV !

If octupole soft in Y20 deformation

K = 0− band :
I = 1, 3, 5, ,,,,,, all with π = − .

K = 1− band :

I = 1,2,3,4,5,,,, all with π = − .



ex.3.

Measured  B(E1) ~ 10-5 BW (E1) values in many deformed rare-earth nuclei,
which are supposed not to be octupole soft, are difficult to be explained,
especially those in odd-A nuclei. 


